
Noname manuscript No.
(will be inserted by the editor)

Optimizing Sparse Matrix-Vector Multiplications on
An ARMv8-based Many-Core Architecture

Donglin Chen · Jianbin Fang · Shizhao
Chen · Chuanfu Xu · Zheng Wang

Received: date / Accepted: date

Abstract Sparse matrix-vector multiplications (SpMV) are common in scien-
tific and HPC applications but are hard to be optimized. While the ARMv8-
based processor IP is emerging as an alternative to the traditional HPC proces-
sor design, there is little study on SpMV performance on such new many-cores.
To design efficient HPC software and hardware, we need to understand SpMV
behavior. This work develops a quantitative approach to characterize SpMV
performance on a recent ARMv8-based many-core architecture, Phytium FT-
2000Plus (FTP). We perform extensive experiments involved over 9,500 dis-
tinct profiling runs on 956 sparse datasets and five mainstream sparse matrix
storage formats, and compare FTP against the Intel Knights Landing many-
core. We experimentally show that picking the optimal sparse matrix storage
format and parameters is non-trivial as the correct decision requires expert
knowledge of the input matrix and the hardware. We address the problem
by proposing a machine learning based model that predicts the best storage
format and parameters using input matrix features. The model automatically
specializes to the many-core architectures we considered. Experimental results
show that our approach achieves on average 93% of the best-available perfor-
mance without incurring runtime profiling overhead.

Keywords SpMV · Sparse matrix format · Many-Core · Performance

D. Chen, J. Fang, S. Chen, C. Xu
College of Computer, National University of Defense Technology, Changsha, China
E-mail: {chendonglin14, j.fang, chenshizhao12, xuchuanfu}@nudt.edu.cn

Z. Wang
School of Computing and Communications, Lancaster University, United Kingdom
E-mail: z.wang@lancaster.ac.uk

2 D. Chen et al.

1 Introduction

The sparse matrix-vector multiplication (SpMV)1 is one of the most com-
mon operations in scientific and high-performance-computing (HPC) applica-
tions [18]. While SpMV is often responsible for the application performance
bottleneck, it is notoriously difficult to be optimized. This is due to a number
of inherent issues arising from the computation kernel, the matrix storage for-
mat, the sparsity pattern of the input matrix, and the complexity of parallel
hardware [11, 12].

Numerous sparse matrix storage formats have been proposed [2, 7, 8, 11,
15, 20], all aiming to reduce the memory footprint by only storing a fraction
of the elements of the target matrix. While there is an extensive body of work
on optimizing SpMV on SMP and multi-core architectures [11, 12], there is
little work on investigating SpMV performance on ARM-based many-core ar-
chitectures. Given that ARM-based processor IP is emerging as an alternative
for HPC processor architecture [9, 19, 22], it is crucial to understand how
well different sparse matrix storage formats perform on such architectures and
what affects the resulting performance. Understanding this can not only help
software developers to write better code for the next-generation HPC systems,
but also provide useful insights for hardware architects to design more efficient
hardware for this important application domain.

This paper studies the SpMV performance on the latest ARMv8-based
Phytium FT-2000Plus (FTP) [1, 22]. This architecture integrates over 60
processor cores to offer a powerful computation capability, making it attrac-
tive for the next-generation HPC systems. We conduct a large-scale evalua-
tion involved over 9,500 profiling runs performed on 956 representative sparse
datasets and consider five widely-used sparse matrix representations: CSR [20],
CSR5 [11], ELL [7], SELL [8, 15], and HYB [2]. We also compare SpMV perfor-
mance on FTP against the Intel Knights Landing (KNL) multi-core that has
been deployed in many HPC systems. This comparison provides insights on
whether an ARMv8-based many-core requires a different optimization strategy
for SpMV computation.

We demonstrate that although there is significant gain for choosing the
right sparse matrix storage format and parameters, mistakes can seriously
hurt the performance. We then investigate what cause the performance dis-
parity. Our data show that picking the optimal storage format and parameters
requires expert knowledge of the underlying hardware and the input matrix.
To help developers to choose the right storage format, we employ machine
learning to develop a predictive model. Our model is trained offline using a
set of training examples. The inputs to the model are static features extracted
from the input matrix. The trained model is then used at runtime to choose
the optimal storage format for any unseen sparse matrix. Experimental results
show that our approach is highly effective in choosing the sparse matrix stor-

1 A SpMV operation – y = Ax – multiplies a sparse matrix A of size m× n by a dense
vector x of size n, and then produces a dense vector y of size m.

Optimizing SpMV on An ARMv8-based Many-Core Architecture 3

age format, delivering on average over 90% of the best-available performance
on FTP and KNL.

In summary this paper makes the following contributions:

– We provide the first extensive characterization of SpMV performance on
FTP, an emerging ARMv8-based many-core architecture for HPC;

– We reveal how the storage format parameters and hardware architecture
differences affect the SpMV performance on FTP and KNL;

– We develop a machine learning technique to predict the best sparse matrix
storage format, which is portable across many-core architectures.

2 Background and Experimental Setup

In this section, we describe the sparse matrix storage formats considered in
this work and our experimental setup.

2.1 Sparse Matrix Storage Formats

We consider five mainstream sparse matrix storage formats, described as fol-
lows.

CSR. The compressed sparse row (CSR) format explicitly stores column in-
dices and nonzeros in arrays indices and data, respectively. It uses a vector
ptr, which points to row starts in indices and data, to query matrix values.
The length of ptr is n row+ 1, where the last item is the total number of the
nonzero elements of the matrix.

CSR5. The CSR5 format aims to obtain a good load balance for matrix value
queries [11]. It achieves this by partitioning all nonzero elements into multiple
2-dimensional tiles of the same size.

ELL. For an M ×N matrix with a maximum number of K nonzero elements
per row, The ELLPACK-Itpack (ELL) format stores the sparse matrix in a
dense M ×K array. If there are fewer than K elements in a row, the row is
padded with zeros. ELL uses an integer companion array, indices, to store
the column indices of the each nonzero element. This scheme may be inefficient
if many rows of the target matrix have fewer than K elements.

SELL. Sliced ELL (SELL) is an extension to the ELL format by partitioning
the input matrix into strips of C adjacent rows [15]. Each strip is stored in the
ELL format but the number of nonzero elements of each strip may be different.
Because the number of stored elements in each row is no longer determined by
the maximum of nonzero elements of a row but by the “longest row” in this
strip of rows, some of the slices may require less storage space compared to
ELL. SELL-C-σ improves the vanilla SELL by adding row sorting such that
rows with similar number of nonzero elements are grouped in one block [8]. To
trade-off the cost of sorting against the acceleration of the SpMV, rows are not

4 D. Chen et al.

Fig. 1 A high-level overview of the FTP architecture.

sorted globally but within σ consecutive rows. In this work, we use SELL-C-σ
and refers it as SELL to aid readability thereafter.

HYB. The HYB format is a combination of ELL and the simple COO for-
mat which explicitly stores indices of the row, column, and values of nonzero
elements [2]. For each matrix row, HYB stores K nonzero elements using the
ELL format and the remaining elements in COO.

2.2 Evaluation Setup

Hardware Platforms. As depicted in Figure 1, FTP integrates 64 ARMv8
based Xiaomi cores. It offers a peak performance of 512 Gflops for double-
precision operations, with a maximum power consumption of 100 Watts. The
cores can run up to 2.4 GHz, and are groups into eight panels with eight
cores per panel. Each core has a private 32KB L1 data cache, and a 2MB
L2 cache shared among four cores. The panels are connected through two
directory control units (DCU) [1]. In addition to FTP, we also evaluate the
SpMV performance on the Intel KNL many-core. This allows us to directly
compare an ARMv8-based architecture against the popular Intel-based many-
core design. A KNL chip integrates 72 cores where each core has four threads
running at 1.3 GHz.

Systems Software. We run a customized Linux OS with Linux Kernel v4.4
and v3.10 on FTP and KNL respectively. For compilation, we use gcc v6.4.0
on FTP and Intel icc v17.0.4 on KNL with the “-O3” compiler option. We use
the OpenMP threading model, using 64 threads on FTP and 72 threads on
KNL.

Datasets. We use 956 square matrices (with a total size of 90 GB) from the
SuiteSparse matrix collection [4]. The number of nonzero elements of the matri-
ces ranges from 100K to 20M. The dataset includes both regular and irregular
matrices, covering domains from scientific computing to social networks.

Optimizing SpMV on An ARMv8-based Many-Core Architecture 5

CSR CSR5 ELL HYB SELL0

2

4

6

8

10

12

14

S
p
e
e
d
u
p
s

o
v
e
r

N

U
M

A
-u

n
a
w

a
re

(x
)

Fig. 2 The violin diagram shows the speedup distribution of NUMA-aware memory allo-
cation on FTP. The thick black line shows where 50% of the data locates.

3 SpMV Performance Analysis

3.1 Roadmap

Recall that our goal is to understand how different sparse matrix storage for-
mats perform on FTP. In addition to the sparse matrix storage format, mem-
ory allocation and code optimization can also affect the SpMV performance.
To isolate the problem, we need to find out the optimal memory allocation
and code optimization scheme. For memory allocation, we investigate Non-
Uniform Memory Access (NUMA) bindings. For code optimization, we look
at vectorization because it is an important optimization opportunity for ma-
trix multiplications. We then study the impact of the sparse matrix storage
format by using the best-found strategy of NUMA memory allocation and
code vectorization.

3.2 The Impact of NUMA Bindings

FTP exposes eight NUMA nodes where a group of eight cores are directly con-
nected to a local memory module. Indirect access to remote memory modules
is possible but 1.5x slower than accessing the local module. Here we use the
Linux NUMA utility, numactl, to allocate the required data buffers from the
local memory module for an OpenMP thread that performs SpMV computa-
tion.

As can be seen from Figure 2, NUMA-aware memory allocation signifi-
cantly outperforms the non-NUMA-aware counterpart, giving an average speedup
ranging from 1.5x to 6x across five storage formats. As such, we enable static
NUMA bindings on FTP. We also observe that the ELL format consumes
the largest memory buffers among the five storage formats, and thus we can
achieve the maximum speedup with manual NUMA bindings.

3.3 The Impact of Code Vectorization

To investigate the impact of vectorization, we manually vectorize the compu-
tational kernel using the CSR5 and the SELL storage formats. Before testing
our code on FTP, we verify it on KNL which also has a SIMD vectorization

6 D. Chen et al.

CSR CSR5 ELL HYB SELL0
1
2
3
4
5
6
7
8

S
p
e
e
d
u
p
s

K
N

L
v
s

FT
P
 (

x
)

(a) KNL over FTP

C S R C S R 5 E L L S E L L H Y B0
1 0
2 0
3 0
4 0
5 0
6 0

%
of

be
ing

 op
tim

al

 F T P K N L

(b) Optimal storage format distribution

Fig. 3 Sub-figure (a) shows the speedups of KNL over FTP and sub-figure (b) suggests the
optimal storage format changes from one architecture to the other.

unit. We obtain a speedup of 1.6x and 1.5x for CSR5 and SELL respectively
over the non-vectorized code, confirming the effectiveness of our manual im-
plementation. However, we observe no speedup and sometimes slowdown for
running the vectorized code on FTP. We believe this is because unlike KNL,
FTP does not support the gather operation which is essential for access-
ing elements from different locations of a vector. Our findings suggest that
future ARMv8-based many-core designs perhaps should support the gather

operation to achieve good vectorization performance. For the remaining ex-
periments in this work, we use the manually vectorized code on KNL and the
non-vectorized code on FTP.

3.4 The Impact of Hardware Architecture Differences

Figure 3(a) compares the performance by running the same kernel on KNL
over FTP. KNL outperforms FTP by delivering, on average, at least 1.3x
speedup (up to 2.1x) across the five storage formats. The performance ad-
vantage of KNL primarily comes from its Multi-Channel DRAM (MCDRAM)
which provides more than 6x bandwidth over the traditional DDR memory.
Thus, MCDRAM significantly reduces the memory access time once the data
is loaded into it. The performance benefit of KNL also comes from the better
support of code vectorization as mentioned in Section 3.3. On the other hand,
we observe that on some matrices, especially when the matrix size is small,
FTP delivers better performance over KNL. This is largely due to the larger
L2 data cache on FTP and a more efficient coherence protocol. Overall, our
results suggest that a fast memory hierarchy is essential for obtaining good
SpMV performance.

Figure 3(b) shows the optimal storage format distribution changes from one
architecture to the other. For example, although CSR is optimal for more than
half of the matrices on KNL, it should only be used for 10% of the matrices
on FTP. This diagram suggests that the choice of the storage format depends
on the underlying hardware. Table 1 gives the average slowdowns when using
a fixed format across all test cases over the optimal one. The slowdown has a
negative correlation with how often a given format being optimal. Using a fixed

Optimizing SpMV on An ARMv8-based Many-Core Architecture 7

Table 1 The average slowdown (x) over the optimal when using a fixed storage format.

CSR CSR5 ELL SELL HYB

FTP 1.5x 1.7x 6.6x 1.3x 1.2x
KNL 1.3x 1.4x 8.7x 1.5x 1.6x

kkt_power Hamrle3 ML_Geer RM07R0

2

4

6

8

10

G
fl
o
p
s

SELL-2-16
SELL-2-32
SELL-2-64
SELL-2-128
SELL-2-256
SELL-2-512

(a) Perf. when σ increases and C = 2

kkt_power Hamrle3 ML_Geer RM07R0

2

4

6

8

10

12

G
fl
o
p
s

SELL-1-128
SELL-2-128
SELL-4-128
SELL-8-128

(b) Perf. when C increases and σ = 128

Fig. 4 The impact of σ and C on SpMV performance.

msdoor nd12k pkustk10 oilpan
7

8

9

10

11

12

G
fl
o
p
s

histogram
traditional

(a) Performance with different strategies

0 10 20 30 40 50 60 70 80
5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

G
fl
o
p
s

histogram

traditional

A

HYB
ELL
CSR

(b) Performance when K increases

Fig. 5 How the change of K of HYB affects the SpMV performance.

format can miss significant optimization opportunities with up to 6.6x and 8.7x
slowdowns on FTP and KNL respectively. This experiment shows that there
is no “one-fits-for-all” storage format across matrices and architectures. As
such we need to have an adaptive scheme to help developers to choose the
optimal sparse matrix format. In Section 4, we describe how to develop such
an approach using machine learning.

3.5 The Impact of Storage Format Parameters

We now consider the impact of choosing storage format parameters. Among the
five storage formats considered in this work, SELL has two tuning parameters,
C and σ, and HYB has one tuning parameter, K. In this experiment, we
investigate the impact of these tuning parameters on FTP.

8 D. Chen et al.

3.5.1 SELL

We choose four matrices, RM07R, kkt power, Hamrle3, and ML Geer, to evalu-
ate how different values of C and σ affect the performance of SELL. These four
matrices are chosen because they represent distinct matrix characteristics.

Figure 4(a) shows the resulting performance as σ increases when we fix
C to 2 (which matches the double-precision register width of FTP). We ob-
serve improved performance for all matrices when using a larger σ, which in
turns leads to less padding operations (see Section 2.1), but the performance
improvement reaches a plateau when σ is set to 128. This is because a larger
σ also means a bigger sorting scope, which is more likely to increase the load
imbalance.

Figure 4(b) shows how the change of C affects the performance. In this
experiment, we fix σ to the overall optimal value of 128. Here, we observe little
change in performance with different C values. This is because while a larger
C enables more aggressive loop unrolling (which can improve performance),
it also incurs more padding operations which can eclipse the benefit of loop
unrolling.

3.5.2 HYB

Recall that HYB stores K nonzero elements in ELL and the rest in COO.
Thus, the choice of K can have an impact of the SpMV performance. In
this experiment, we compare two algorithms for choosing K: an average based
algorithm [3] and a “histogram” based scheme [2]. This evaluation is performed
on four matrices listed in Figure 5(a) to keep the experiments manageable.
Note that these matrices are different from those used to study SELL, because
these are the matrices where HYB is the optimal choice.

As can be seen from Figure 5(a), the “histogram” based algorithm delivers,
on average, 10% performance improvement over its counterpart. Figure 5(b)
shows how the performance on msdoor changes when K is increased from
1 to 80. HYB could be a good storage format for the considered matrices,
but this requires ones to choose the correct K value. A wrong K value can
lead to significantly worse performance, e.g., the point marked with label A
in Figure 5(b). This example shows how important it is to choose the right
parameter setting.

4 Predictive Modeling for Storage Format Selection

We develop an automatic machine learning approach to automatically choose
the correct sparse matrix storage format. Our approach takes a new, unseen
sparse matrix and is able to predict the optimal or near optimal sparse matrix
representation for a given architecture. To demonstrate the portability of our
approach, we train and evaluate a predictive model on FTP and KNL.

Optimizing SpMV on An ARMv8-based Many-Core Architecture 9

Table 2 The features used in our model.

Features Description Features Description

n rows number of rows n cols number of columns
nnz frac % nonzeros nnz min minimum #nonzeros per row
nnz max maximum # nonzeros per row nnz avg average #nonzeros per row
nnz std standard derivation # nonzeros per row nnz var variance # nonzeros per row

Our model for predicting the best sparse matrix storage format is a decision-
tree-based random forests model [5]. We have evaluated other alternative tech-
niques, including regression, Naive Bayes and K-Nearest neighbour (see also
Section 5.2). We chose the decision tree model because it gives the best per-
formance and can be easily interpreted compared to other black-box models.

Building and using such a model follows the 3-step process for supervised
machine learning: (i) generate training data (ii) train a predictive model (iii)
use the predictor, described as follows. Our predictive model is built upon the
Python scikit-learn package [16].

4.1 Training the Predictor

To train a predictor we first need to find the best sparse matrix storage format
for each of our training examples, and extract features. We then use this set
of data and classification labels to train our predictor model.

Generating Training Data. We use the standard five-fold-cross validation
for training. Specifically, we select, from the SuiteSparse matrix collection, 20%
samples for testing and then use 80% samples (i.e., 756 matrices) for training.
We execute SpMV using each of the targeting sparse matrix storage formats.
We run each training setting several times until the gap of the upper and lower
confidence bounds is smaller than 5% under a 95% confidence interval setting.
We then record the best-performing storage format for each training sample
on our target hardware platform. Finally, we extract the values of our selected
set of features from each matrix.

Building The Model. The optimal matrix storage labels, along with their
corresponding feature set, are passed to our supervised learning algorithm.
The learning algorithm tries to find a correlation between the feature values
and optimal representation labels. The output of our learning algorithm is a
version of our random forests model. Since training is performed off-line and
only need to be carried out once for a given architecture, this is a one-off cost.

Total Training Time. The total training time of our model is comprised of
two parts: gathering the training data, and then building the model. Gathering
the training data consumes most of the total training time, in this paper it
took around 3 days for the FTP and KNL platforms. In comparison actually
building the model took a negligible amount of time, less than 10 ms.

10 D. Chen et al.

CSR CSR5 ELL HYB SELL ours0.0

0.2

0.4

0.6

0.8

1.0

P
e
rc

e
n
t

to
 t

h
e
 O

ra
cl

e

 p
e
rf

o
rm

a
n
ce

 o
n
 F

T
P
(%

)

(a) FTP

CSR CSR5 ELL HYB SELL ours0.0

0.2

0.4

0.6

0.8

1.0

P
e
rc

e
n
t

to
 t

h
e
 O

ra
cl

e

 p
e
rf

o
rm

a
n
ce

 o
n
 K

N
L

(%
)

(b) KNL

Fig. 6 The predicted performance of SpMV on FTP and KNL. We show the achieved
performance with respect to the best available performance across sparse formats.

4.2 Features

Our predictive model is based exclusively on static features of the target matrix
and no dynamic profiling is required. Since our goal is to develop a portable,
architecture-independent approach, we do not use any hardware-specific fea-
tures.

We considered a total of seven candidate raw features (Table 2) in this
work. Some features were chosen from our intuition based on factors that can
affect SpMV performance e.g. nnz frac and nnz var, other features were chosen
based on previous work [18]. Before passing the feature values to the predictive
model, we also scale each scalar value of the feature vector to a common range
(between 0 and 1) in order to prevent the range of any single feature being
a factor in its importance. We record the minimum and maximum values of
each feature in the training dataset, and use these to scale the corresponding
features for an unseen input during deployment.

4.3 Runtime Deployment

The trained model is encapsulated in a runtime library. We provide an API to
extract matrix features and a tool to perform matrix format transformation.
For a given matrix, our tool automatically translates it to the five targeted
storage formats of parameter settings. The transformation is performed offline
and does not incur runtime overhead. During runtime, the off-line trained
model predicts the optimal storage format and parameters to use, and the
library automatically selects the offline generated format to run on the target
architecture.

5 Predictive Modeling Evaluation

5.1 Overall Performance

As described in Section 4.1, we use cross-validation to train and test our pre-
dictive model to make sure the model is evaluated on new, unseen inputs. We

Optimizing SpMV on An ARMv8-based Many-Core Architecture 11

GNB MLP VC KNC DTC LR RF (ours)0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

P
re

d
ic

ti
o
n
 A

cc
u
ra

cy FTP
KNL

Fig. 7 Compare to alternative classifiers.

nnz_var<0.1

nnz_max<230

ELL

nnz_std/nnz_avg<0.26 n_rows<35642

SELL CSR SELL CSR5

YES NO

Fig. 8 How two unseen matrices follow the
different paths of a learned tree.

repeat the cross-validation process multiple times to ensure all matrices in our
dataset are tested at least once.

Figure 6 shows that our predictor achieves, on average, 93% and 95% of the
best available SpMV performance (found through exhaustive search) on FTP
and KNL respectively. We also note that our predictor outperforms a strategy
that uses only the single overall-best format on each platform, i.e., SELL or
HYB on FTP and CSR on KNL (see Table 1). This experiment shows that our
predictor is highly effective in choosing the right sparse matrix representation.

5.2 Alternative Modeling Techniques

Figure 7 shows resulting performance with respect to the best available per-
formance when using different techniques to construct the predictive model.
In addition to our random forests based model (RF), we also consider Gaus-
sian näıve bayes (GNB), multilayer perception (MLP), soft voting/majority
rule Classification (VC), k-Nearest Neighbor (KNC, k=1), logistic regression
(LR), decision tree classification (DCT). Thanks to the high-quality features,
all classifiers are highly accurate in choosing sparse matrix representation. We
choose RF because its accuracy is comparable to alternative techniques.

5.3 Analysis of The Predictive Model

One of our motivations for using a decision-tree-based random forests model
is that this modeling technique is interpretable. This means that we can gain
insights of why a certain storage format is chosen.

Figure 8 shows one of the decision trees in our random forests model on
FTP. The learning algorithm automatically places the most relevant features
at the root level and determines the architecture-dependent threshold for each
node. All this is done automatically without the need of expert intervention.

Table 3 lists the feature values extracted from two distinct matrices, c-71
and skirt. To choose a storage format, we follow the decision tree depicted
in Figure 8. At the root of the tree, we look at the value for the nnz var. This

12 D. Chen et al.

Table 3 Feature values of matrix c-71 and skirt.

Matrix Feature value Feature Value Features Value Feature Value

c-71 n rows 76638 n cols 76638 nnz frac 0.000146 nnz min 2
nnz max 6720 nnz avg 11.2 nnz std 29.2 nnz var 854.7

skirt n rows 12598 n cols 12598 nnz frac 0.00123 nnz min 1
nnz max 33 nnz avg 15.6 nnz std 6.3 nnz var 39.8

feature uses the variation (i.e., dispersion) for the number of nonezero elements
among rows to measure the matrix regularity. The values are far above the
threshold, suggesting that the nonzero elements are not evenly distributed in
both matrices. We thus go to the right subtree and reach the second level
of the tree. This node looks at nnz max. The feature value of c-71 is larger
than the threshold and therefore the right branch is taken, but for skirt we
choose the left branch. The metric of nnz max counts the largest number of
nonzero elements within a row. A large value in the feature suggests that the
longest row is likely to cause load imbalance. In such a case, storage formats
like CSR5 and SELL may be a good fit because they are designed to avoid load
imbalance. At the second-last level of the tree, we look at nnz rows and nnz std
/ nnz avg respectively for c-71 and skirt. Based on the feature value of the
matrices, we choose CSR5 and CSR respectively for c-71 and skirt. The
chosen formats are indeed the optimal storage formats for the two matrices.

6 Related Work

A large body of work has been conducted in the past to study SpMV perfor-
mance on parallel systems [14, 17, 20]. However, our work is the first com-
prehensive study for SpMV performance on an ARMv8-based many-core. Our
work fills the gap by providing an in-depth performance analysis on two emerg-
ing many-core architectures (KNL and FTP). The insights will be useful for
designing more efficient parallel HPC software and hardware in the future.

Efforts have been made in designing new storage formats for various parallel
processor architectures including SIMD CPUs and SIMT GPUs [2, 6, 11, 12,
13, 20, 21]. However, how well these existing sparse matrix formats perform
on ARM-based many-cores remains an open problem. Our work attempts to
answer this question by providing comprehensive analysis and new insights.

It is shown that there is no universally optimal sparse matrix storage for-
mat [23]. Thus, it is important to choose the right format according to the
right input matrix features to achieve good SpMV performance. Prior work
has developed methods to choose a sparse matrix storage format [10, 18], but
no work has targeted an ARM-based many-core architecture. Recently, Zhao
et al. employ deep learning to automatically extract important features from
the input matrices to help to build a predictive model [23]. Their approach of
feature extraction is thus orthogonal to our machine learning based approach.

Optimizing SpMV on An ARMv8-based Many-Core Architecture 13

7 Conclusion

This paper has presented a large-scale study of SpMV performance on an
emerging ARMv8-based many-core architecture, Phytium FT-2000Plus (FTP).
We show how the memory allocation scheme, code vectorization and the sparse
storage format and its parameters affect the SpMV performance. We compare
the results on FTP against the ones obtained from another representative
HPC processor, the Intel Knights Landing. We reveal how the architectural
differences affect the optimization strategies, providing useful insights into the
possible improvements for the future ARM-based many-core design. Because
there is no “one-fits-for-all” sparse matrix storage format, we develop a ma-
chine learning based model to help developers to choose the correct format.
Our model is first trained offline and the learnt model can be used for any
unseen input matrices. Experimental results show that our model is effective
and portable across architectures, delivering over 90% of the best-available
performance.

Acknowledgements This work was partially funded by the National Natural Science
Foundation of China under Grant Nos. 61602501, 11502296, 61772542, and 61561146395; the
Open Research Program of China State Key Laboratory of Aerodynamics under Grant No.
SKLA20160104; the UK Engineering and Physical Sciences Research Council under grants
EP/M01567X/1 (SANDeRs) and EP/M015793/1 (DIVIDEND); and the Royal Society In-
ternational Collaboration Grant (IE161012). For any correspondence, please contact Jianbin
Fang (Email: j.fang@nudt.edu.cn)

References

1. (2017) FT-2000. Phytium Technology Co. Ltd., http://www.phytium.com.cn/Product/
detail?language=1&product_id=7

2. Bell N, Garland M (2009) Implementing sparse matrix-vector multiplication on
throughput-oriented processors. In: SC

3. Chen S, Fang J, Chen D, Xu C, Wang Z (2018) Adaptive optimization of sparse matrix-
vector multiplication on emerging many-core architectures. In: HPCC

4. Davis TA, Hu Y (2011) The university of florida sparse matrix collection. ACM Trans
Math Softw

5. Ho TK (1995) Random decision forests. In: ICDAR, pp 278–282
6. Im E, Yelick KA, Vuduc RW (2004) Sparsity: Optimization framework for sparse matrix

kernels. IJHPCA
7. Kincaid D, et al. (1989) Itpackv 2d user’s guide. Tech. rep., Center for Numerical Anal-

ysis, Texas Univ., Austin, TX (USA)
8. Kreutzer M, Hager G, Wellein G, Fehske H, Bishop AR (2014) A unified sparse matrix

data format for efficient general sparse matrix-vector multiplication on modern proces-
sors with wide SIMD units. SIAM J Scientific Computing

9. Laurenzano MA, Tiwari A, Cauble-Chantrenne A, Jundt A, Jr WAW, Campbell RL,
Carrington L (2016) Characterization and bottleneck analysis of a 64-bit armv8 plat-
form. In: ISPASS

10. Li J, Tan G, Chen M, Sun N (2013) SMAT: an input adaptive auto-tuner for sparse
matrix-vector multiplication. In: PLDI

11. Liu W, Vinter B (2015) CSR5: an efficient storage format for cross-platform sparse
matrix-vector multiplication. In: ICS

12. Liu X, Smelyanskiy M, Chow E, Dubey P (2013) Efficient sparse matrix-vector multi-
plication on x86-based many-core processors. In: ICS

14 D. Chen et al.

13. Maggioni M, Berger-Wolf TY (2013) An architecture-aware technique for optimizing
sparse matrix-vector multiplication on gpus. In: ICCS

14. Mellor-Crummey JM, Garvin J (2004) Optimizing sparse matrix - vector product com-
putations using unroll and jam. IJHPCA

15. Monakov A, Lokhmotov A, Avetisyan A (2010) Automatically tuning sparse matrix-
vector multiplication for GPU architectures. In: HIPEAC

16. Pedregosa F, et al. (2011) Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research

17. Pinar A, Heath MT (1999) Improving performance of sparse matrix-vector multiplica-
tion. In: SC

18. Sedaghati N, Mu T, Pouchet L, Parthasarathy S, Sadayappan P (2015) Automatic
selection of sparse matrix representation on gpus. In: ICS

19. Stephens N (2016) Armv8-a next-generation vector architecture for HPC. In: 2016 IEEE
Hot Chips 28 Symposium (HCS), pp 1–31

20. Williams S, Oliker L, Vuduc RW, Shalf J, Yelick KA, Demmel J (2007) Optimization
of sparse matrix-vector multiplication on emerging multicore platforms. In: SC

21. Williams S, Oliker L, Vuduc RW, Shalf J, Yelick KA, Demmel J (2009) Optimization
of sparse matrix-vector multiplication on emerging multicore platforms. Parallel Com-
puting

22. Zhang C (2015) Mars: A 64-core armv8 processor. In: HotChips
23. Zhao Y, Li J, Liao C, Shen X (2018) Bridging the gap between deep learning and sparse

matrix format selection. In: PPoPP

