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Deep Learning Research and Development
Platform: Characterizing and Scheduling with

QoS Guarantees on GPU Clusters
Zhaoyun Chen, Wei Quan, Mei Wen, Jianbin Fang, Jie Yu, Chunyuan Zhang and Lei Luo

Abstract—Deep learning (DL) has been widely adopted in various domains of artificial intelligence (AI), achieving dramatic develop-
ments in industry and academia. Besides giant AI companies, numerous small-and-medium-sized enterprises, institutes, and universities
(EIUs) have focused on the research and development (R&D) of DL. Considering the high cost of datacenters and high performance
computing (HPC) systems, EIUs prefer adopting off-the-shelf GPU clusters as a DL R&D platform for multiple users and developers to
process diverse DL workloads. In such scenarios, the scheduling of multiple DL tasks on a shared GPU cluster is both significant and
challenging in terms of efficiently utilizing limited resources. Existing schedulers cannot predict the resource requirements of diverse DL
workloads, leading to the under-utilization of computing resources and a decline in user satisfaction. This paper proposes GENIE, a QoS-
aware dynamic scheduling framework for a shared GPU cluster, which achieves users’ QoS guarantee and high system utilization. In
accordance with an exhaustive characterization, GENIE analyzes the key factors that affect the performance of DL tasks and proposes a
prediction model derived from lightweight profiling to estimate the processing rate and response latency for diverse DL workloads. Based
on the prediction models, we propose a QoS-aware scheduling algorithm to identify the best placements for DL tasks and schedule them
on the shared cluster. Experiments on a GPU cluster and large-scale simulations demonstrate that GENIE achieves a QoS-guarantee
percentage improvement of up to 67.4% and a makespan reduction of up to 28.2%, compared to other baseline schedulers.

Index Terms—DL Research and Development Platform, Characterizing, Scheduling, QoS-aware, GPU clusters.
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1 INTRODUCTION

O VER the past few years, deep learning (DL) has been
proven as a general and effective tool for diverse

artificial intelligence (AI) fields [1, 2]. Emerging DL cloud
services [3–5], provided by giant AI companies, further
expand the adoption of DL in various business-critical pro-
cesses. Besides, more and more small-and-medium-sized
enterprises, institutes and universities (EIUs) are likewise
focusing on the research and development (R&D) of DL,
such as innovations in network structure, new application
development and prediction accuracy improvement [6, 7],
as shown in Fig. 1(a).

Different from DL cloud services provided by giant AI
companies, DL R&D platforms among EIUs have their own
specific features: 1) DL platform of giant companies always
provided custom-designed servers, storage, and networking
support for the resource requirement of each major work-
load [8–10]. Considering the high cost of customization,
EIUs prefer adopting cost-effective commodity GPUs to
assemble and build a limited-scale cluster to process diverse
DL workloads. Therefore, a high-efficient scheduling for
EIUs’ DL platforms is extremely significant. 2) Most giant
companies propose their own complete automation DL
platforms which consist of a mix of technique optimizations
and supports, such as HDFS, Spark, MLLib and TensorFlow
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[11, 12]. Due to the high cost of the development and
maintenance of an automation DL platform, a decoupling
scheduling framework, which is more suitable for EIUs,
can minimize the changes of existing system and reduce
the dependence on other techniques. 3) A highly special-
ized platform of giant companies unifies users’ interfaces
to support diverse workloads. All users should refer to
the interfaces to customize own tasks [12, 13]. However,
EIUs DL R&D platform only process diverse DL tasks (i.e.,
training and inference), providing support for a broad range
of DL applications. Meanwhile, the scheduling frameworks
for EIUs’ scenarios try not to change the way of users’
programming and task submitting, achieving high-efficient
deployment. These specific EIUs’ scenarios need customized
scheduling design to improve processing efficiency.

However, most of the studies on this topic have so far
focused on the requirements of giant companies concern-
ing datacenters and high performance computing (HPC)
systems, such as Tianhe supercomputer [14]. There is a
small amount of research that has considered DL R&D
platforms for EIUs. Prior work [15, 16] has studied the
allocation of resources based on historical information and
heuristics, where DL applications are scheduled simply as
another big-data job, ignoring domain-specific knowledge.
Taking Graphite Cluster of Cornell University [17] as an
example, the cluster adopts the traditional SLURM for re-
source management, which cannot make full use of het-
erogeneous resources for diverse DL tasks. Load imbalance
and resource under-utilization also appear in other existing
cluster systems of numerous universities and laboratories
[18–20], which leads to an enormous waste of resources.
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Fig. 1. (a) Small-and-medium enterprises, institutes and universities (EIUs) focus on the DL research and development (R&D) platform to process
diverse DL tasks, supporting a wide range of AI applications. (b) A GPU cluster is widely adopted as the DL R&D platform. Multiple users and
developers submit their DL tasks with various QoS requirements to the shared GPU cluster.

Recently, there are some studies that have focused on DL
task scheduling for the purpose of exploiting cluster capabil-
ity. Researchers [21, 22] have focused on scheduling design
only for batch inference, which is more suitable for online
DL services than DL R&D platforms. Researchers [23, 24]
optimized and accelerated only a single DL training task
on a distributed cluster, achieving the fastest training speed.
Meanwhile, researchers [6, 7, 25, 26] have also attempted
to explore and optimize multiple training tasks co-located
on a server or cluster, but without QoS consideration. As
shown in Fig.1(b), different users and developers submit
their own DL tasks with various configurations and QoS
requirements to a limited scale DL R&D platform. In these
real DL R&D scenarios, it is critical to fulfill users’ QoS
guarantees and high system utilization at the same time,
which is meaningful and challenging.

To maximize the system utilization and guarantee users’
QoS requirements, a scheduler should be able to utilize
the domain-specific knowledge of DL workloads to predict
the relationship between resource provision and its impacts
on task performance. It should thereby be able to make
decisions concerning resource allocation and task placement
according to the current conditions of system workloads.
Thus, in this paper, we focus on DL R&D scenarios and
attempt to propose a novel scheduling solution to fulfill
the targets mentioned above. Our work aims to answer the
following four research questions:

• Which factors among diverse application configura-
tions and task placements have the largest impact on
processing performance for DL tasks?

• How should the proper models for off-the-shelf GPU
clusters and diverse DL tasks be constructed?

• In DL R&D scenarios, how should users’ QoS and
system utilization be quantified? How should the
scheduling objectives for these scenarios be de-
signed?

• How might resources be allocated dynamically for
multiple DL tasks to effectively exploit the GPUs,
achieving the above scheduling objectives?

To answer these questions, we propose GENIE, a QoS-
aware dynamic scheduling framework to process multiple
DL tasks on a GPU cluster. In more detail, the major contri-
butions of this paper to the field are as follows:

• Focusing on GPU clusters adopted as DL R&D plat-
forms in most EIUs, which are not considered much

in the most current research in this area, we present
a comprehensive characterization for DL tasks and
show the performance impact of various application
configurations and task placement policies.

• Based on observations from the characterization, we
provide an analytical model to quantify the rela-
tionship of resource provision and processing rate
through a lightweight profiler.

• According to the analytical model, we design a QoS-
aware dynamic scheduling framework GENIE to
identify effective placements for DL tasks on GPU
clusters.

• An evaluation on a real GPU cluster is presented,
demonstrating that GENIE outperforms other base-
lines in terms of QoS-guarantee percentage and
makespan. Moreover, a trace-driven simulation on
larger distributed clusters indicates the good scala-
bility of our QoS-aware strategy.

Note that, our scheduler is equally applicable in large-scale
distributed systems such as datacenters and HPC systems.

An earlier conference version of this paper appeared
in [27]. Here we extend the previous paper in several
respects. Firstly, our benchmark is expanded from convo-
lutional neural network (CNNs) to deep neural network
(DNNs), including diverse CNNs and recurrent neural net-
work (RNNs) models. We also provide a more exhaustive
evaluation of DL workloads using multiple application con-
figurations and diverse GPU localities. From our characteri-
zation, more valuable observations are drawn to support the
scheduling design. Secondly, a complete system modeling
and problem statement are included to show the details of
our scheduling framework. Thirdly, additional experiments,
numerical statistics and analyses are also provided.

2 BACKGROUND

DL, especially DNN, is a type of representation learning
that automatically infers features from raw data in order to
accomplish AI tasks. Diverse DNN models, such as CNNs
and RNNs, have many similarities. The structures of DNNs
are usually defined by a set of connections between different
groups of neurons that perform the same function, known
as layers. A well-trained DNN model can produce high-
quality features for input images or speeches. The DNN
computation includes training and inference. Training is a
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process that uses a learning algorithm, such as stochas-
tic gradient descent (SGD) and labeled training data, to
tune the network parameters for certain applications. An
inference is a process that deploys the trained model to
test on another unlabeled dataset, which is done with the
aim of evaluating the generalization of the trained model.
Considering the complexity of DNNs and the large size of
the datasets, the training and batch inferences are usually
carried out in an iterative fashion. Moreover, DNN training
and batch inference operate on a few samples of data
simultaneously, known as a mini-batch. In each iteration,
the DNN models process a batch of data by computing
the billions of floating point operations. Essentially, training
and batch inference are both iterative processes. And other
task types that have the same characteristics as mini-batch
processing and iterative processing can be added to our
benchmarks.

With the increasing popularity of DL, numerous DL
frameworks (including Tensorflow, MXnet and Caffe) have
been proposed to optimize the various aspects of training
and inference. Furthermore, most models in Model Zoo are
fine-tuned using several typical DNN models, e.g., Inception
[28] for image classification, and Seq2seq [29] for machine
translation. These classic models are adopted in this work.
For parallel or distributed systems, data parallelism and
model parallelism are the primary sources of parallel tasks
on multiple GPUs [30]. In terms of data parallelism, each
device is responsible for the complete computing proce-
dure of a DNN model. When each device completes the
gradient calculation in each iteration, the gradients must
be aggregated and used to update the parameters of the
model. The aggregation leads to a significant communica-
tion overhead known as a synchronous communication
overhead. In contrast, in model parallelism, an individual
network’s computation is distributed across multiple de-
vices. The communication overhead results not only from
parameter aggregation, but also from intermediate results
communication across connections between devices. Due
to the more complex communication requirement of model
parallelism, placement design based on data parallelism is
common in industry and academia, which is also the focus
of this work. Meanwhile, in order to simplify the scheduling
problem, we assume that each task always has symmetric
placements on multiple devices. Each device has its own
worker and parameter server to process the same scale sub-
task. Moreover, each device needs to communicate with
others during synchronization. In recent years, although
some new accelerators (such as FPGA, ASIC and TPU) have
emerged, GPU still dominates in DL-related research. The
comprehensive characterization and scheduling research of
representative DL tasks on a GPU cluster are presented in
the following section.

3 GENIE OVERVIEW

In this paper, we focus on how to exploit the GPU cluster
to efficiently process diverse DL tasks in DL R&D scenarios.
More specifically, given a GPU cluster platform P and a
DL task queue Γ = 〈t1, t2, ...〉, our scheduling framework
GENIE aims to identify the most appropriate placement for
each task and the order of the task queue, achieving high
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Fig. 2. The outline of our proposed scheduling framework GENIE. GE-
NIE contains two parts: the offline profiling and the online scheduling.
The offline part provides a prediction model based on the characteri-
zation of diverse DL workloads. The online part exploits the prediction
model and users’ QoS to design the scheduling strategy, including task
placements and executing orders.

users’ QoS guarantee and system utilization. As shown in
Fig. 2, GENIE contains two parts: offline profiling and online
scheduling.

3.1 Offline Profiling
Offline profiling constructs a prediction model for diverse
DL workloads, supporting the following scheduling design.
The prediction model is based on system modeling, which
in this paper includes platform modeling and task mod-
eling. For a specific GPU cluster, platform modeling P is
related to the total number of GPUs and a hierarchical GPU
connection. Moreover, in a task queue Γ , DL tasks have
diverse application configurations and QoS requirements.
The challenge of modeling tasks is to find the key factors
among the application configurations and task placements
that have a significant impact on processing performance.
In order to present practical DL task models and platform
models, Section 4 proposes a comprehensive characteriza-
tion for DL tasks under diverse configurations and place-
ments on a GPU cluster. Based on the platform modeling
and task modeling, the offline part presents the prediction
model by means of a lightweight profiler. More details about
the offline part are described in Section 5.1.

3.2 Online Scheduling
Based on the prediction model from the offline part, the on-
line part in Fig.2 proposes a dynamic QoS-aware scheduling
strategy. In the online part, our strategy decides the task
placement and executing order for each task according to
the principle of shortest waiting allowance first (SWAF). In
order to dynamically achieve high users’ QoS guarantee and
system utilization, our QoS-aware scheduling strategy is im-
plemented based on an event-driven mechanism and makes
dynamic scheduling decisions on specific time points. We
will give more details about the online scheduling part in
Section 5.

4 DL WORKLOAD CHARACTERIZATION

In this section, a comprehensive characterization is pro-
posed to qualitatively evaluate diverse DL models in order
to construct the practical task models. The factors affecting
task performance include the application configurations and
the task placements. We select several typical CNN models
(Inception-v3 and ResNet-50) and RNN models (Regularized
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TABLE 1
Platform Specifications

Specifications
Node Powerleader 4U PR4712GW Chassis * 4

System CentOS 7.0, Tensorflow 1.7.0
CPU Intel Xeon E5-2660 v3, 10C, 2.60GHz * 2

/ node
Memory 64GB DDR3 Memory / node

GPU NVIDIA Tesla K80 * 4 / node
Interconnection 56Gbps InfiniBand, PCIe 3.0 x16 in

node, no NVlink

LSTM and Seq2Seq) and evaluate them on a 16-GPU cluster.
The specifications of the 16-GPU cluster, which is adopted
as our DL R&D platform, are shown in Table 1. Consid-
ering that Tensorflow has numerous users for application
development, in this paper, we adopt Tensorflow 1.7.0 as
our implementation framework.

Our evaluation is focused on the impacts of diverse
application configurations and task placements. Based on
the characterization, we analyze and conclude on the ob-
servations to guide the subsequent task modeling and
scheduling. Due to space limitations, we show the results
of Inception-v3 and Seq2seq. Other DL models have the same
features and properties.

4.1 The Impacts of Application Configurations

In DL research and development scenarios, users and devel-
opers typically try several application configurations, called
hyper-parameters, of a specific model to identify the qual-
ified configurations. Such conditional exploration, called a
hyper-parameter search, can be manual or automated. Apart
from the model structure, the hyper-parameters include the
learning rate, step size, batch size, the number of iterations
and momentum, which affect convergence, the level of
parallelism, accuracy, and the processing rate. However, in
this section, we only focus on the response latency and
processing rate from the view of the system, without a
change on model accuracy and convergence. The processing
rate is measured by samples (images or words)/second. Based
on previous studies [6, 22] and numerous experiments, we
observe and analyze that batch size and the number of
iterations have significant effects on these metrics.

Observation 1: For DL tasks, the response latency is linearly
correlated with the number of iterations. The processing rate
increases at first and then plateaus as the batch size continues
to increase on a single GPU.

As shown in Fig. 4, we present the evaluation of
Inception-v3 and Seq2seq to show the impacts of perfor-
mance with varying application configurations on a single
GPU. More specifically, the results show that the latency
increases linearly with the number of iterations for various
DL models. With a given number of iterations, it is easy to
predict the response latency. In contrast, batch size has more
complex impacts on the processing rate for diverse DL tasks,
as illustrated in Fig. 4(b). As the batch size continues to
increase, the processing rate also increases, sharply at first,
and it then plateaus when the batch size reaches a certain
point. The reason is that the GPU computing resources
become saturated until the batch size reaches a certain point.
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Fig. 3. Inter- and intra-node Topology for GPU clusters. Nodes within
the same rack typically have InfiniBand links, while cross-rack traffic
goes through the ethernet. Moreover, there is a hierarchy of network
connectivity among GPUs in a node.

Compared to training, inference has less computation and a
higher processing rate.

Observation 2: GPU utilization is positively correlated with
batch size. Compared with training, inference has lower GPU
utilization. The GPU memory occupancy depends on the model
structures and DL frameworks.

Meanwhile, we give a detailed profiling for diverse
DL tasks using NVIDIA Profile to conduct a performance
analysis. The metrics we have adopted include GPU utiliza-
tion and GPU memory occupancy, which are both affected
by batch size. As shown in Fig. 5(a), GPU utilization is
positively correlated with batch size. However, for inference
tasks, GPU utilization plateaus when the batch size reaches
a certain point. This occurs because the fast inference pro-
cess cannot hide the read latency of the input images in each
iteration. Moreover, GPU memory occupancy is another
key factor. By default, Tensorflow pre-allocates nearly all
GPU memory of all GPUs visible to the single process [31],
which cannot support multiple tasks. To change this, we set
the allow growth option in Tensorflow, which attempts to
allocate GPU memory as usage grows. The maximum GPU
memory occupancies with varying batch sizes are shown
in Fig. 5(b). Obviously, apart from batch size, the GPU
memory occupancy is dominated by the Tensorflow frame-
work, which leads to irregular increases in the memory oc-
cupancy. Considering the dynamic and unpredictable GPU
occupancy, GPUs are considered exclusive and not shared
by multiple tasks simultaneously. The exclusive mechanism
can make the following modeling and scheduling design
more concise.

4.2 The Impacts of Diverse Placement Strategies

Generally, task placement is related to the platform model.
As mentioned in Section 3.1, the key factors of the platform
model for GPU clusters include the total number of GPUs
and the hierarchy GPU connection. However, compared
with datacenters and HPC systems, GPU clusters adopted
as DL R&D platforms have a similar cluster setup but a
limited scale. As shown in Fig. 3, nodes within the same
rack typically have InfiniBand links, while cross-rack traffic
goes through the ethernet. Moreover, there is a hierarchy
of network connectivity among GPUs in a node. Consider-
ing the actual situations of and cost implications for most
EIUs, in this paper, our DL R&D platform is limited in a
rack, without cross-rack traffic and NVLink interconnects
in a node. Moreover, in order to simplify the problem, we
assume that the GPU cluster in our paper is symmetric
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Fig. 5. GPU resource occupancy with varying batch sizes on a single GPU.

and that each node has the same number of CPUs and
GPUs. Therefore, the platform models P in our paper are
based on the number of nodes, the number of GPUs per
node, and the hierarchical GPU connection. Moreover, we
denote the number of nodes and the number of GPUs in
each node to indicate diverse task placements, which cannot
exceed the upper limits of our platform. The impacts of the
hierarchy GPU connection are reflected in our evaluation of
GPU scalability and locality.

Moreover, in this paper, we focus on data parallelism and
symmetric placement. Based on data parallelism, for a DL
task with a fixed global batch size, the more nodes and GPUs
we use, the smaller the local batch size on each GPU is. This
distributed training method on multiple devices has been
proven to obtain an equivalent training effect compared to
training on a single GPU [32]. The symmetry placement
determines that each sub-task divided on each GPU has the
same computation. We then propose the evaluation of the
impacts under diverse placements for DL tasks.

Observation 3: The processing rate of a DL task is determined
by the processing rate of each GPU and the synchronization over-
head among GPUs. The task with a larger batch size is preferred
for spreading across multiple GPUs, while the task with a smaller
batch size is preferred for packing on less GPUs or a single
GPU. Inference tasks have linear scaling with the increasing total
number of GPUs due to the absence of synchronization.

Taking Inception-v3 as an example, we first present the
GPU scalability results in Fig. 6 and the impacts thereof
with an increasing total number of GPUs and varying batch
sizes. When the number of GPUs exceeds 4, the task would
be spread over multiple nodes. As shown in Fig. 6(a), for

varying global batch sizes, the overall processing rates have
different trends as the total number of GPUs increases in one
node or multiple nodes. When the global batch size is small,
the processing rate has no significant improvements as more
GPUs are adopted (when the global batch size is smaller
than 16). This is because the model synchronization over-
head among GPUs dominate in response latency, and GPU
utilization is low due to the small local batch size assigned to
each GPU. When the global batch size is increasing in size,
the training performance increases sharply along with the
increasing number of GPUs (when the global batch size is
larger than 16). This is because the single GPU’s utilization
is becoming saturated and the synchronization frequency
and overhead percentages among GPUs decrease. However,
spreading over multiple GPUs may lead to resource frag-
mentation [20]. For inference tasks, as shown in Fig. 6(b),
the processing rate achieves almost linear scaling along with
the increasing total number of GPUs due to the absence of
synchronization among GPUs.

Observation 4: The DL training tasks with smaller batch
sizes are more sensitive to the GPU locality than those with larger
batch sizes.

We evaluate the different levels of sensitivity to GPU
locality, that are correlated to synchronization frequency and
overheads. Considering that inference tasks have no syn-
chronization during runtime, they also have no sensitivity to
GPU locality. Due to space limitations, we only present here
the evaluation results of training tasks. Fig. 7(a) shows the
intra-node locality for Inception-v3 training. When the model
is trained with two GPUs in a node, there are three kinds of
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GPU localities: two GPUs on the same PCIe Switch (denoted
as SamePCIeSW); two GPUs on the different PCIe Switch but
on the same CPU socket (denoted as SameSocket); and two
GPUs on different CPU sockets (denoted as DiffSocket). As
shown in Fig. 7(a), poor locality can lead to performance
degeneration due to the model synchronization overhead in
each mini-batch. More specifically, the degeneration wors-
ens when the global batch size decreases. When the batch
size is increasing, the synchronization frequency decreases,
and the communication load on the underlying PCIe bus
is alleviated [6]. Similar trends are observed on multiple
nodes, as shown in Fig. 7(b). When Inception-v3 is trained
with four GPUs, there are three types of inter-node localities:
four GPUs in a node (denoted as 1N4G), four GPUs in two
nodes (denoted as 2N2G), and four GPUs in four nodes
(denoted as 4N1G). Obviously, the communication overhead
among nodes is larger than that among GPUs in one node.

5 SCHEDULING POLICY

Based on the qualitative analysis in the previous section,
in this section, we focus on system modeling and propose
our QoS-aware scheduling framework GENIE for DL R&D
scenarios. As shown in Fig.2, we explain the details of offline
profiling and online scheduling. Section 5.1 presents system
modeling and a prediction model for a single DL task un-
der diverse configurations and placements. The prediction
model is based on offline profiling results and is conducted
by a lightweight profiler. According to the prediction model,

Sections 5.2-5.4 present our complete QoS-aware scheduling
strategy to dynamically determine task placements and
executing order, achieving high users’ QoS guarantee and
system utilization. Complete notation concerning the terms
used for modeling and scheduling is shown in Table 2.

5.1 Prediction Modeling for Single DL Task
5.1.1 Platform Modeling and Task Modeling
Firstly, we present our system modeling, including platform
models and task models. According to the platform model-
ing explained in Section 4.2, a given homogeneous platform
is denoted as a triple

P = 〈N,G,Comm(·)〉, (1)

where N and G represent the upper limits of the num-
ber of nodes and the number of GPUs per node respec-
tively. Meanwhile, Comm(·) refers to a communication
penalty function for prediction modeling. The communica-
tion penalty is related to the hierarchical GPU connection of
platform P .

According to the characterization of Section 4.1, the key
factors, including task type, batch size and the number of
iterations, are selected from diverse application configura-
tions to model tasks. Therefore, a given task is denoted as a
triple

t = 〈wtype, wbat, witer〉, (2)

where wtype, wbat and witer represent the task type,
global batch size and number of iterations respectively.
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TABLE 2
Notation used for modeling and scheduling

Notation Description
P = 〈N,G,Comm(·)〉 A DL R&D platform, where N , G and

Comm(·) reprensent the upper limits
of the number of nodes, the number of
GPUs per node and the communication
penalty function.

t = 〈wtype, wbat, witer〉 A DL task, where wtype,wbat,witer rep-
resent the task type, global batch size
and the number of iterations.

s = 〈dnode, dg/n〉 A placement of task t, where dnode and
dg/n represent the number of nodes and
the number of GPUs per node.

Lat(t, s) The response latency of task t under
placement s.

PR(t, s) The processing rate of task t under
placement s. sPR(t′) represents the
processing rate for task t′ on a single
GPU.

Comm(s) The synchronous communication over-
head under placement s.

Cost(s) The cost of placement s.
CER(t, s) The cost-effective ratio of task t under

placement s.

More specifically, task type includes the model type, e.g.,
Inception-v3, and the calculation type, i.e., training and in-
ference. Moreover, task placements have significant impacts
on processing rate and response latency. According to Ob-
servation 4, considering that the intra-node GPU locality has
less of an impact on performance, we prefer choosing the
placements with the best available GPU locality in one node.
Therefore, the placement on a GPU cluster for a task is
denoted by a tuple

s = 〈dnode, dg/n〉, (3)

including the number of nodes dnode and the number of
GPUs per node dg/n. Based on the symmetric placement hy-
pothesis mentioned in Section 2, a task is equally distributed
across multiple nodes and GPUs.

5.1.2 Performance Prediction Model
A prediction model for a single DL task forms the basis of
the following multi-task scheduling design. According to
Observation 2, GPUs are adopted as exclusive accelerators in
this paper due to unpredictable GPU occupancy. Therefore,
the interference of GPU sharing by multiple tasks can be
ignored. Diverse DL tasks, including training and batch
inference, are iterative in nature. The response latency de-
pends on the whole computation and processing rate. The
response latency of task t under placement s is calculated
as

Lat(t, s) =
wbat · witer

PR(t, s)
+ ν, (4)

where PR(t, s) represents the processing rate, and wbat ·
witer represents the whole computation of the task. More-
over, ν represents the startup overhead of the GPUs. Gen-
erally, the startup overhead of the GPUs is related to task t
and the occupied number of GPUs. However, in Tensorflow,
all GPUs are started by default, then the startup overhead is
degenerated to a constant value.

According to our Observation 3 in Section 4, the overall
processing rate of a task under a distributed placement is

determined by the processing rate of each single GPU
and the performance reduction caused by the synchronous
communication overhead among GPUs. Therefore, the pro-
cessing rate of diverse DL tasks under varying application
configurations and placements denoted by PR is denoted as

PR(t, s) = (dnode · dg/n − Comm(s)) · sPR(t′), (5)

where sPR(t′) and Comm(s) are the processing rate of
each single GPU and the communication penalty function
respectively. Meanwhile, t′ is the subtask assigned to each
occupied GPU. They are discussed in Section 5.1.3 and
Section 5.1.4. In Eq. 5, dnode · dg/n is the total occupied
number of GPUs under placement s. Ideally, the overall
processing rate is determined by the product of the total
number of GPUs and the processing rate of each single GPU,
assuming there is no communication overhead. However,
the synchronous communication overhead among GPUs
introduces an additional performance reduction, denoted as
Comm(s).

5.1.3 Processing Rate of a Single GPU
Task t under placement s is equally divided across multiple
nodes and GPUs based on the global batch size. Each
subtask assigned to each GPU has the same local batch size.
That is, subtask t′ is denoted as

t′ = 〈wtype, w
′
bat, witer〉 = 〈wtype,

wbat

dnode · dg/n
, witer〉, (6)

where w′bat is the local batch size assigned to each single
GPU. According to Observation 1 in Section 4, we observe
a positive correlation between the processing rate of each
single GPU sPR and the local batch size w′bat. Based on the
correlation, we adopt a polynomial function to model the
processing rate of a single GPU. Therefore, the processing
rate of a single GPU sPR is described as

sPR(t′) =
∑
i

ki(w
′
bat)

i =
∑
i

ki(
wbat

dnode · dg/n
)i, (7)

where ki is the coefficient depending on task type wtype and
the platform model P . In order to simplify the modeling and
avoid over-fitting, the degree of the polynomial regression
is made as simple as possible. Our experiments show that a
quadratic polynomial, i.e. i = 2, is sufficient for modeling
the processing rate of each single GPU.

5.1.4 Synchronous Communication Overhead
When the synchronous communication overhead among the
nodes and GPUs is ignored, the ideal performance can be
obtained by calculating the total number of GPUs and the
performance of each single GPU. However, the synchronous
communication overhead leads to additional performance
breakdown. In this paper, we introduce a communication
penalty function Comm(·), which is based on the average
path length among GPUs, to quantify these overheads. The
communication penalty function Comm(·) is described as

Comm(s) =

{
0 dnode=dg/n=1,
((dnode−1)·dg/n+λ(dg/n−1))·γ

dnode·dg/n−1
dnode, dg/n>1.

(8)
As mentioned in Section 2, during the DL training syn-
chronization, each GPU must communicate with each other.
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Fig. 8. Inception-v3 and ResNet50 training performances under diverse placements on a 4-node, 16-GPU DL cluster. ’Measured’, ’Exhaustive’ and
’Lightweight’ represent the real value and the theoretical values calculated by prediction models of exhaustive and lightweight profiling, respectively.

Therefore, the communication penalty function is deter-
mined by the topology of placement s. Taking any one
GPU in placement s as an example, (dnode − 1) · dg/n and
(dg/n − 1) represent the number of GPUs across different
nodes and the number of GPUs in the same node for
communication. The sum of the total number of GPUs for
communication is dnode ·dg/n−1. Moreover, γ is a coefficient
associated with the hierarchical GPU connection of platform
P , and λ is a balance factor that normalizes the different
communication capabilities in the same node and across
different nodes. The coefficient γ and the balance factor λ
are obtained from the profiling and regression. In addition,
when dnode = dg/n = 1, the task is running on a single GPU
and Eq. 5 degenerates to Eq. 7. For inference tasks, Comm(·)
is equal to 0 due to the fact that there is no communication
among iterative computings.

5.1.5 Lightweight Profiling Method
Clearly, there are several types of coefficients, ki, γ and
λ, that are related to task type wtype and the experimen-
tal platform P . They are derived by unary or multiple
regression according to the profiling results. For a given
task type wtype and platform P , we assume that there are
B, N and G different configurations for the global batch
size, the number of nodes, and the number of GPUs per
node on a DL GPU cluster. During offline profiling, the
overall experimental cost of the profiling is B × N × G in
terms of obtaining the prediction model for task type wtype

on platform P . However, we observe that this exhaustive
profiling method is too costly, and there is much redundant
information. In order to decrease the profiling cost, we
conduct a lightweight profiling method that can obtain
sufficient results for a coefficient regression.

Firstly, Eq. 7 shows that the processing rate is only
related to the batch size on a single GPU. Therefore, the
regression of ki only requires the experiments to be under-
taken B times on a single GPU to obtain the relationship
between the batch size and the processing rate. Likewise, the
regression of γ and λ requires N +G runs for a fixed global
batch size. Specifically, G times experiments are used for
evaluating the impacts of the number of GPUs per node, and
N times experiments are used for evaluating the impacts of
the number of nodes respectively.

A training performance comparison is shown in Fig. 8.
The average prediction error conducted by our lightweight
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profiler for diverse DL models is less than 5%. Although
more profiling data can be used for finetuning to achieve
higher prediction accuracy, our lightweight profiler has
achieved comparable accuracy with limited experiments,
which is sufficient for scheduling design. Greater evalua-
tions of prediction accuracy in multi-task scheduling scenar-
ios are presented in Section 7. Meanwhile, the lightweight
profiler is highly efficient, as B + N + G � B × N × G.
For example, a DL task type have 10, 15, 16 configurations
for B, N and G. The total number of lightweight profiling
experiments is almost 40 times. Due to the iterative fashion
of DL task, each experiment only needs approximately 100
iterations, which costs average 0.5 minute. Each type of
DL model only needs to be profiled once. More details
on the offline profiling can refer to Section 6. Therefore,
the modeling and the scheduling framework have good
generalization and scalability by means of the lightweight
profiler on diverse types of models and larger scale of
clusters, including datacenters and HPC systems.

5.2 User-Oriented and System-Oriented Metrics

Before describing the details of our QoS-aware scheduling
algorithm, we propose some user-oriented and system-
oriented metrics in this paper, which are conducive to the
following problem statement and scheduling design. Sec-
tion 5.2.1 presents our QoS definition from the user’s per-
spective, and Section 5.2.2 provides a cost-effective model
from a system perspective.

5.2.1 Definition of User’s QoS
Firstly, we consider the QoS metrics in this paper. For a
multi-user DL R&D platform, the expected completion time
(ECT) e is a key indicator of the QoS of the DL task. In
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most cases, it is acceptable for users that the submitted tasks
are finished before ECT [33]. As shown in Fig. 9, if the
response latency exceeds the ECT, users’ QoS satisfaction
would decrease sharply. Considering that ECT is related to
the computation of the task, we refer to [34] and denote
the double baseline response latency of the task execution
on a single GPU as the normal users’ ECT. In emergencies
of varying degrees, users can apply for higher priorities to
shorten their ECTs. For task t, we define three classes of user
priorities and their associated ECTs e as

e =


0 Urgent,
Lat(t, 〈1, 1〉) Prior,
2Lat(t, 〈1, 1〉) Normal,

(9)

where 〈1, 1〉 represents the placement on a single GPU and
dnode = dg/n = 1. Note that the ECTs of the Urgent tasks are
zero, meaning that these tasks have the highest priorities
and should be finished as soon as possible. However, such
tasks have to violate their QoS regardless of the placements
chosen. In the following evaluation, we adopt the QoS-
guarantee percentage to show the average QoS satisfaction
of users.

5.2.2 A Cost-Effective Model with Diverse Placements
Based on Observation 3, a higher allocation occupancy of
computing resources can lead to performance improvement
in most cases. Moreover, some tasks are less sensitive to
GPU locality, especially for tasks with large batch sizes.
In a multi-task scenario, cross-node placement is usually
unavoidable. For these tasks, a spread placement across
multiple nodes can also achieve similar performance than a
packed placement in one node from Observation 4. Therefore,
a scheduling framework should consider diverse place-
ments to improve the efficiency of resource allocations in
order to avoid resource fragmentation [20]. We introduce
cost model Cost(·), which is determined by the total number
of GPUs and the topology among them, to estimate resource
occupancy and fragmentation. The cost model is denoted as

Cost(s) =
dnode · dg/n
N ·G

+ θ
dnode
N

, (10)

where N and G represent the upper limits of dnode and
dg/n provided by the cluster. In Eq. 10, the first item repre-
sents the normalized total GPU occupancy. The second item
reflects the impacts on the topology of the total occupied
GPUs and θ is the weight factor that is used to adjust the
balance between two items. In our definition of a cost model,
the more concentrated the occupied GPUs are, the lower the
cost is. An example of the cost model is shown in Fig. 10.
Based on Eq. 5 and Eq. 10, the cost-effective ratio (CER) can
be calculated as follows:

CER(t, s) =
PR(t, s)

Cost(s)
, (11)

which is significant for the following scheduling design to
achieve high system utilization.

5.3 Problem Statement and Scheduling Objective
We present the complete problem statement here. Given
the platform P with the communication penalty function

Comm(·) and the upper limits of the number of nodes
N and the number of GPUs per node G, there is a task
queue Γ = 〈t1, t2, ...〉. The ECTs of the tasks are e1, e2, ...
respectively. For each task ti, we make a trade-off between
GPU scalability and resource fragmentation to search for
an optimal placement si∗ that can guarantee the ECT of
ti with the highest CER as best effort. Then, the executing
order O of the tasks must be dynamically adjusted for users’
QoS considering the emergencies of varying degrees. In
summary, considering the limited computing resources and
QoS constraints, the aim of our scheduling strategy is to
guarantee users’ QoS while improving system utilization
as a best-effort delivery by determining the scheduling
orders and placements of tasks. The QoS-guarantee percent-
age Q, the percentage of the tasks that do not exceed ECTs,
and makespan M are denoted as the scheduling objectives.
The scheduling problem in our paper can be formalized as

Given: P = 〈N,G,Comm(·)〉 and Γ = 〈t1, t2, ...〉,
find: S = 〈s1∗, s2∗, ...〉 and O = 〈t′1, t′2, ...〉,
maximizing: Q, minimizing: M,

subjected to: si∗ = 〈d(i)node, d
(i)
g/n〉, i ∈ [1, 2, ...],

d
(i)
node < N, d

(i)
g/n < G.

5.4 A QoS-aware Scheduling Algorithm

Based on the problem statement, we propose a QoS-aware
dynamic scheduling algorithm on a GPU cluster. For a
given platform P , the task queue keeps changing online
throughout runtime with old tasks finishing and new tasks
arriving constantly. In order to dynamically achieve the
above scheduling objectives, our QoS-aware scheduling al-
gorithm is implemented based on an event-driven mech-
anism, and we choose the specific time points to make
dynamic scheduling decisions. The scheduling time points
are derived from the events of task completion or a new
arrival. We then describe a snapshot of our QoS-aware
scheduling process at a specific time point.

At each event-based time point, we propose a scheduling
algorithm based on the principle of shortest waiting al-
lowance first (SWAF) to make the current optimal schedul-
ing decision. Assuming that the current time is tcurr, the
tasks that arrive at time tcurr are pushed into a waiting queue
Qcurr. Qcurr has tasks

t1, t2, ..., tn, n = |Qcurr|

whose ECTs are, respectively,

e1, e2, ..., en.

For each task, we calculate the response latency l and CER
r of each placement according to Eq. 4 and Eq. 11. For
example, there are qi placements

si1, si2, ...siqi , qi = |Mi|

in a placement set Mi for task ti, whose response latencies
and CERs are, respectively,

li1, li2, ...liqi , qi = |Mi|
ri1, ri2, ...riqi , i ∈ [1, 2, ..., n].
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Algorithm 1: A Snapshot of QoS-aware Dynamic Scheduling Process on Time Point tcurr

Input: Waiting Queue Qcurr, Current Time tcurr, Platform P = 〈N,G,Comm(·)〉
Output: Reordered Queue Q′curr

1 for each task ti ∈ Qcurr do
2 Obtain ECT ei of task ti;
3 Generate all placements for task ti under the limitations of platform P and store them in the set Mi;
4 Initialize the palcement subset M′i = ∅;
5 for each placement sij ∈Mi do
6 Calculate response latency lij of task ti under placement sij according to Eq. 4;
7 Calculate CER rij of task ti under placement sij according to Eq. 11;
8 if placement sij satisfies ECT ei according to Eq. 12 then
9 push placement sij into M′i;

10 if M′i 6= ∅ then
11 Select placement si∗ with the highest CER from M′i;
12 else
13 Select placement si∗ with the highest CER from Mi;

14 Compute waiting allowance wi according to Eq. 13;

15 Reorder Qcurr based on the shortest waiting allowance first (SWAF) schema, and obtain reordered queue Q′curr;
16 return Q′curr;

...

Task Reordering

GPU Cluster

GPU GPU GPU GPU

GPU GPU GPU GPU

Placement Selection of QoS 
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GPU GPU GPU GPU

GPU GPU GPU GPU

GPU GPU GPU GPU

Placement Calculation
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Waiting
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Fig. 11. The processing flow of our QoS-aware scheduling algorithm on time point tcurr. The blocks of different colors represent different DL tasks.
The placement of each task is represented by the number of squares on the DL cluster. As tasks finish and new tasks arrive, the order and
placement solution of each task in the waiting queue may keep changing.

In order to guarantee the user’s QoS, we select the place-
ments sij ∈Mi, which can satisfy the QoS by

lij + tcurr ≤ ei, i ∈ [1, 2, ..., n],

j ∈ [1, 2, ..., qi].
(12)

The placements sij , which satisfy the above QoS require-
ments, are pushed into a subset of Mi, denoted as M′i. The
placement si∗ of the highest r among M′i is adopted as the
solution for task ti. A key indicator for current task priority,
denoted as waiting allowance w, is calculated based on the
placement si∗ by

wi = ei − (li∗ + tcurr), i ∈ [1, 2, ..., n],

si∗ ∈M′i.
(13)

The order of all tasks is determined by the waiting al-
lowances. The task with a smaller w in the task queue has
a higher priority. Moreover, when there are no placements
that can meet the user’s ECT, the placement with the highest
CER among Mi is adopted as the solution. Obviously, w
could be negative, which has no impact on the task ordering.
The scheduler then monitors the cluster load and launches
the tasks according to the reordered waiting queue. When
the cluster cannot meet the resource requirements, the tasks
in the waiting queue keep waiting. As tasks finish and new
tasks arrive, the order and placement solution of each task
in the waiting queue may keep changing. A snapshot of our

dynamic scheduling process is shown in Algorithm 1 and
Fig. 11.

The number of the loops from line 1 to line 14 is
∑n
i=1 qi.

Meanwhile, other parts have constant computation over-
head, including initialization, placement generation, latency
and CER calculation, and placement selection. Therefore,
the whole placement calculation (from line 1 to line 14) has
O(

∑n
i=1 qi) = O(nq̄) complexity. Moreover, the reordering

(line 15), which is implemented by Heapsort, has O(n log n)
complexity. The overall time complexity of our scheduling
algorithm isO(nq̄)+O(n log n) = O(n(q̄+log n)). However,
the average number of placements q̄ on a limited scale GPU
cluster is much less than the number of tasks n. According
to q̄ � n, the time complexity of our QoS-aware algorithm
can be deduced as O(n log n).

6 IMPLEMENTATION

We implemented a prototype of the scheduling framework,
called GENIE, as a plugin for Tensorflow, prototyping our
proposed QoS-aware scheduling strategy. As shown in Fig.
12, GENIE includes two stages: offline profiling and online
scheduling. Offline profiling constructs a prediction model
for diverse DL workloads. Based on the prediction model,
online scheduling decides the task placement and executing
order for each task.
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Fig. 12. The implementations of our scheduling framework GENIE. GENIE contains two parts: Offline Profiling and Online Scheduling. Each task
is submitted to two parts simultaneously. For offline profiling part, the model database is in charge of storing and providing the prediction models
for diverse task types. If there is no record in the model database, an existing prediction model is selected based on similarity comparison of
model structures. Meanwhile, the lightweight profiler would make a profiling for the new task type when the GPU cluster has enough available
resources and store the new prediction model into the model databased. For online scheduling part, the waiting queue keeps all waiting tasks.
Based on the prediction model and an event-driven mechanism, the placement selection, waiting allowance calculation and reordering for all tasks
are dynamically finished in the waiting queue. According to the system load, the ready task is popped from the queue to the scheduler and the
scheduler launches the popped task on the GPU cluster.

Offline profiling part consists of a model database and
a lightweight profiler. Before scheduling, we have made a
profiling for most typical DNN models and stored the corre-
sponding prediction models in the database. When each task
is submitted, the task type information is retrieved from the
model database. If the task type has been profiled before,
the prediction model can be loaded from the database for
subsequent scheduling. If there is no record, our framework
would select an existing prediction model whose model
structure has the highest similarity with the new task model.
The similarity judgment is based on PB file and MetaGraph.
When the GPU cluster has enough available resources, the
lightweight profiler would make a profiling for the new task
type and store the corresponding prediction model in the
database.

Online scheduling part mainly includes a waiting queue
and a scheduler. The arrived tasks are pushed into the
waiting queue, where the selected placement and waiting al-
lowance of each task are calculated according to the predic-
tion models. Then the waiting queue is reordered according
to the waiting allowances w. Moreover, the waiting queue
is implemented according to a priority queue structure, an
efficient implementation for task automatic ordering, and it
is updated by an event-driven mechanism. The scheduler
keeps monitoring the system load. When the cluster has
enough idle resources, the task with the maximum priority
is popped from the queue to the scheduler. The scheduler
launches the popped task. Moreover, in this paper, GPUs
are considered exclusive accelerators and tasks have private
access to GPUs. Each task under a placement runs to com-
pletion without the GPU preemption mechanism.

7 EXPERIMENTAL EVALUATION

In this section, we evaluate our proposed scheduling frame-
work GENIE on a real GPU cluster. Furthermore, we pro-
vide a trace-driven simulation on larger-scale clusters to
understand its scalability.

7.1 Experimental Setup

Platform: We adopt the GPU platform as shown in Table
1. Our platform consists of 4 nodes connected with a 56Gb
InfiniBand. Each node has 2 CPUs (Intel Xeon E5-2660 v3 @
2.60GHz) with 64GB of RAM and 4 GPUs (Nvidia Tesla K80)
running CentOS 7.0 and Tensorflow 1.7.0. In order to gain
more insight into the scalability of our proposed strategy,
we have built a simulator that mimics various aspects of
task logs, handling jobs with different arrivals as well as
scheduling strategies.

Workloads: As there are no publicly available ML traces,
we refer to [6, 21] and generate task queues containing
diverse DL tasks with Poisson request arrivals. The specifi-
cations of the task generation are shown in Table 3. We adopt
four classic CNN models, Alexnet, GoogleNet, ResNet50, and
Inception-v3, and two classic RNN models, Regularized LSTM
and Seq2seq, as the representative workloads in our eval-
uation. For each specific DL task, model type, calculation
type, and application configurations (such as batch size and
number of iterations) are generated with uniform distribu-
tion. According to the production workloads analysis [20],
we set the QoS-priority proportions of Urgent and Prior
users as 5% and 35%. Moreover, the duration of the task
arrivals that we set here is 24 hours. In order to evaluate
the scheduling strategies under various workload densities,
we set the densities of multiple task queues as 5, 10 and 20
task arrivals per hour. Detailed evaluations of the parameter
sensitivities are presented in the following section.

Baselines: The baselines, which are adopted for the
purposes of comparison against our proposed QoS-aware
scheduling algorithm, include the well-known scheduling
policies in Yarn, Mesos, and Kubernetes.

• FIFO Scheduler: The FIFO scheduler simply allocates
the available resources for the tasks in the order that
they arrive in the task queue.
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TABLE 3
Specifications of Task Queue Generation

Type Specifications

Model Type CNN Alexnet, GoogleNet,
ResNet50, Inception-v3

RNN Regularized LSTM,
Seq2seq

Calculation Type Training 50%
Inference 50%

QoS-Priority Proportion
Urgent 5%
Prior 35%

Normal 60%

• Capacity Scheduler: The Capacity Scheduler allocates
the cluster resources to multiple types of models with
capacity guarantees. Each model type can only access
its own allocated resources.

• Min-Min Scheduler[35]: The tasks with earlier ECTs
have higher priorities to be processed by Min-Min
Scheduler.

• Weighted Fair Scheduler[36]: The weighted average
value of the task’s arrival time and ECT is adopted as
ordering criterion. The tasks with smaller weighted
values have higher priorities to be processed by
Weighted Fair Scheduler.

• Tetris[37]+Perf Scheduler: Tetris usually allocates re-
sources based on performance estimations. Since
Tetris does not have its own mechanism to estimate a
DL task, we adapt our prediction model to combine
with Tetris. Tetris+Perf Scheduler adopts the resource
allocation with the highest processing rate for each
task.

• Tetris+CER Scheduler: Similarly, we adopt our cost-
effective model to combine with Tetris. Considering
both the prediction models and cost-effective mod-
els, the Tetris+CER Scheduler adopts the allocation
solution with the highest CER for each task, without
considering users’ QoS.

From Tetris+Perf Scheduler to Tetris+CER Scheduler to our
proposed QoS-aware strategy, the scheduling algorithms are
incorporating more and more information and models for
design. Compared with the above mentioned baselines, our
proposed QoS-aware strategy takes users’ QoS and cost-
effective model into consideration for scheduling, achieving
a trade-off between users’ satisfaction and system utiliza-
tion.

Metrics: As explained in Section 5.3, the motivation of
this paper is to guarantee users’ QoS and improve sys-
tem utilization. Therefore, the metrics we adopt here are
makespan and QoS-guarantee percentage. QoS-guarantee
percentage Q is calculated as

Q =
NUM comp

NUM task
, (14)

where NUM comp represents the number of tasks whose
completion times do not exceed ECTs, and NUM task rep-
resents the total number of the scheduled tasks. Moreover,
considering that DL tasks have a wide spectrum of response
latency, i.e., from a couple of hours to weeks, the average
normalization of response latency [8], which can show the
variation of response latency fairly, is also presented in our

evaluation. The average normalization of response latency
L for a task queue 〈t1, t2, ...〉 is calculated as

L = avg(Lnorm(ti)), i ∈ [1, 2, ...], (15)

where Lnorm(ti) represents the normalization of the re-
sponse latency for a single task ti. More specifically,
Lnorm(ti) can be calculated as

Lnorm(ti) =
Lwall(ti)

Lat(ti, 〈1, 1〉)
(16)

where Lwall(ti) represents the walltime of task ti under a
selected placement during runtime and Lat(ti, 〈1, 1〉) rep-
resents the baseline response latency of the task execution
on a single GPU, as defined in Eq. 4. Furthermore, the
evaluation results presented later are the average of three
runs for fairness.

7.2 Evaluation of the Strategy on a GPU Cluster
7.2.1 Scheduling Performance and Comparison
We evaluate our proposed QoS-aware scheduling strategy
using four baselines for comparison. As shown in Fig.
13(a) and Fig. 13(b), the results demonstrate that with
an increasing task density, the QoS-guarantee percentage
decreases and the makespan increases for all scheduling
algorithms. Specifically, Capacity Scheduler and Tetris+CER
Scheduler outperform other baselines. This may be because
Capacity Scheduler and Tetris+CER Scheduler focus more on
resource sharing than on single task performance. For FIFO
Scheduler and Tetris+Perf Scheduler, the pursuit of a single
task performance leads to additional waiting time for other
tasks and low system utilization. Min-Min Scheduler and
Weighted Fair Scheduler only focus on users’ QoS, ignoring
task performance. In this paper, our proposed QoS-aware
strategy takes users’ ECTs and the cost-effective model into
consideration, achieving a trade-off between QoS guaran-
tees for all tasks and system utilization. Moreover, the QoS-
aware algorithm has a stronger tolerance and robustness
for diverse task densities because the scheduling decision
is made by the scheduler according to current users’ QoS
and system loads dynamically. As the results show, the
QoS-aware algorithm achieves an improvement of up to
67.4% in QoS-guarantee percentage and a 28.2% reduction in
makespan over the best baselines. However, when the task
density is too high (> 20), users’ QoS is difficult to guaran-
tee due to limited computing resources, even for a QoS-
aware algorithm. We present the average normalized la-
tency of all tasks in Fig. 13(c). Tetris+Perf Scheduler can iden-
tify the most effective placement solutions. However, only
maximizing the performance of a single task may lead to a
long waiting time and a high makespan due to the resource
contention of multiple tasks. However, Tetris+CER Scheduler
and the QoS-aware strategies take user’s QoS and resource
sharing into consideration and achieve comparable average
normalized latency under varying task densities. Instead,
FIFO Scheduler, Capacity Scheduler, Min-Min Scheduler and
Weighted Fair Scheduler treat DL tasks as black boxes and
place tasks with simple heuristics, ignoring the relationship
between resource provisions and task performance. At last,
the Cumulative Distribution Function (CDF) in Fig. 13(d)
demonstrates that the QoS-aware strategy and Tetris+CER
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Fig. 13. Performance Comparisons for Diverse Scheduling Strategies

Scheduler focus more on resource efficiency and achieve a
higher task completion speed and system utilization than
other scheduling methods.

7.2.2 Sensitivity Analysis
In this section, we examine how diverse workloads affect
scheduling performance. Firstly, we focus on the impact of
processing rate under varying task densities. As shown in
Fig. 14(a) and Fig. 14(b), when the task density is sparse,
most scheduling algorithms can achieve good performance.
However, with the increasing task density, the users’ QoS of
all tasks are more difficult to guarantee due to the limitation
of computing resources. Meanwhile, the makespans of all
scheduling algorithms increase along with the growth of the
task densities. Compared with other baselines, our proposed
QoS-aware scheduling algorithm takes the users’ QoS into
consideration in the scheduling and has better tolerance
for varying task densities, achieving improvements of up
to 67.5% in the QoS-guarantee percentage and a 39.3%
reduction in the makespan over the best baselines.

We further investigate the scheduling performance in
various emergency scenarios. As shown in Fig. 14(c) and
Fig. 14(d), the three numbers represent the proportions
of different QoS priorities. The QoS-guarantee percentage
decreases appreciably as the proportion of the high-priority
tasks increases. Meanwhile, the QoS-aware scheduling al-
gorithm attempts the most effective placement to guarantee
users’ QoS and decrease the makespan.

Finally, Fig. 14(e) and Fig. 14(f) show the sensitivities
to the task arrival duration when the task density = 15.
Although the makespan increases with the growth of the
task arrival duration, the QoS-guarantee percentage only
has an imperceptible decline. The results demonstrate that
our proposed QoS-aware algorithm has a better adaptability
than other baselines for long-term scheduling.

7.2.3 Accuracy of Prediction Model

Our proposed QoS-aware scheduling algorithm relies on the
prediction model for the response latency, as explained in
Section 5.1. In this section, we evaluate the accuracy of the
latency prediction model to validate its effectiveness. The
measured latency of each task under diverse task densities
are collected and compared with the predicted value, which
is calculated based on Eq. 4 and Eq. 5. Fig. 15 shows the
distribution of the prediction errors for all prediction cases.
With the task density increasing, the average prediction er-
ror is higher due to the more intensive resource contentions
and interferences among multiple tasks. However, the 95th
percentile is < 11% even if the task density is high (= 20).
Meanwhile, in our proposed QoS-aware scheduling algo-
rithm, the prediction model is mainly adopted to analyze the
variation trends and CERs of diverse task placements. The
evaluation results demonstrate that the prediction models
from the lightweight profiler are sufficiently accurate and
the errors are insignificant in our scheduling design.

7.2.4 Scheduling Overhead

The scheduling overhead of diverse scheduling strategies is
mainly derived from the monitoring system load and calcu-
lating task placements based on prediction models while the
whole scheduler is running on the master node. As shown
in Fig. 16, as the task density increases, the schedulers make
more decisions concerning task placements, which leads to a
higher scheduling overhead. Due to the complex scheduling
design, our QoS-aware strategy has a higher cumulative
scheduling overhead than other methods. Compared with
the makespan ranging from dozens to hundreds of hours,
the proportion of the scheduling overhead is less than 2%,
even if the task density = 20. Therefore, we conclude
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Fig. 14. Sensitivity Analysis under Diverse Workloads. (a)(b) Sensitivity to Task Density. (c)(d) Sensitivity to QoS-Priority Proportion. (e)(f) Sensitivity
to Task Arrival Duration.

that our proposed QoS-aware scheduling algorithm is suffi-
ciently fast and the scheduling overhead can be ignored.

7.3 Large-scale Simulation

In order to evaluate the scalability of GENIE, we propose a
trace-driven simulation on larger distributed clusters. Con-
sidering the increasing scale of clusters, the workload traces
we adopted here are also generated by a Poisson distribu-
tion with a task density of 20 tasks/hour. The evaluation
results are shown in Fig. 17. As the scales of the platform
increase from 16 GPUs to 128 GPUs, all scheduling strategies
have sufficient processing capabilities to meet users’ QoS
and a high task completion speed. The QoS-guaranteed
percentage is improving and the makespans are decreasing
for all scheduling strategies. However, a greater amount of
computing resources can lead to more placement choices
for each task. Compared with other baselines, the QoS-
guided strategy can identify the most efficient placements
to improve the QoS-guarantee percentage and maximize
system utilization on any scale platform. Specifically, the

QoS-guided strategy has achieved an improvement of up to
46.5% in QoS-guarantee percentage and a 20.8% reduction
in makespan over the best baselines. According to the eval-
uation results, our proposed QoS-aware algorithm demon-
strates a good scalability on diverse larger distributed clus-
ters.

7.4 Discussion

7.4.1 Training Accuracy

For DL R&D platforms, several new model structures have
been proposed for model and application explorations,
called AutoML [38]. During training processes, convergence
and accuracy are usually unpredictable in most cases. In this
paper, we select data parallelism as a distributed approach
on multiple devices [30, 32]. For a fixed global batch size,
the more nodes and devices that are divided and placed,
the smaller the local batch size is on each device. This
distributed training method has been proven no impact on
accuracy and convergence. In the future, our work can be
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Fig. 17. Performances of Large-Scale Simulation. The results demonstrate that the QoS-aware algorithm has better scalability on larger distributed
clusters.

merged with an AutoML framework to further improve
scheduling efficiency.

7.4.2 Multi-task Interference

Considering that GPUs are adopted as exclusive accelerators
in this paper, the interference among multiple tasks derives
from the contentions of communications bandwidths. As
shown in Fig. 18, different communication paths can lead
to different degrees of interference. Fig. 18(a) shows the
intra-node interference for two single-GPU training tasks of
Inception-v3 on a single node. The background task is con-
figured with a global batch size of 16. We observe that the
degrees of interference decrease with the increasing global
batch size for the foreground and the distance between the
locations of two tasks. This is because the tasks with a
large batch size are not sensitive to bandwidth contentions,
since they have low communication frequency. Meanwhile,
a spreading task placement can effectively reduce the inter-
ference of multiple tasks. A similar trend is observed for
inter-node interference. Fig. 18(b) shows that two 4-GPU
tasks are running on two 4-GPU nodes, where each task
occupies two GPUs on each node. The interference includes
a network connection among nodes. The background task
is configured with a global batch size of 64. The impact
of the interference increases as the global batch size of
the foreground task decreases. However, in our proposed
QoS-aware scheduling algorithm, for the tasks with a small
batch size, our scheduling strategy chooses to place them
more compactly, which leads to less communication and

interference. Therefore, the multi-task interference is not a
significant factor in our scheduling framework.

7.4.3 Asymmetric Cluster Scheduling
We assume that the GPU cluster is symmetric in this paper.
However, scheduling on an asymmetric cluster is also an
interesting issue for discussion. The differences of schedul-
ing design between symmetric and asymmetric clusters
includes: 1) Scheduling algorithm on asymmetric clusters
should tap their respective advantages of different nodes
to process diverse tasks. For example, the nodes with only
1 GPU can process the training task with small batch size
while the nodes with multiple GPUs are suitable to process
train DL models with big batch size. 2) Building predic-
tion models and making placement decision should take
more factors into consideration. For a symmetric cluster,
the number of nodes and the number of GPUs in one
node can represent the diverse placements. However, for
an asymmetric cluster, the specific kind of node should
be assigned to make the placement decision. A more fine-
grained characterization and scheduling can be design for
asymmetric clusters, which is a future research direction.

8 RELATED WORK

DL/ML Scheduling. DL and ML have been adopted as
representative techniques in numerous AI challenges. As the
number of DL/ML tasks increases in diverse platforms and
scenarios, recent research has focused on the efficiency of a
single task and the scheduling of multiple tasks [6, 7, 21–
23, 25–27]. [21, 22] have attempted to explored commodity
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Fig. 18. Intra-node and inter-node interference for foreground tasks. In (a), the background task is configured with model Inception-v3 and global
batch size 16 on a single GPU. Moreover, SamePCIeSW, SameSocket and DiffSocket denotes two GPUs on the same PCIe Switch, two GPUs
on the different PCIe Switch but on the same CPU socket and two GPUs on the different CPU socket, respectively. In (b), the background task is
configured with global batch size 64 and four GPUs on two nodes.

GPU-based platforms to improve execution efficiency for
multiple inference tasks. Compared to inference behavior,
training tasks have more complex computation and com-
munications. [23] designed a hierarchical model for efficient
placement of a single DL training task based on reinforce-
ment learning. [6, 7] presented novel workload placement
strategies to schedule multiple training tasks on a single
multi-GPU cluster. Recently, research [25–27] has proposed
applying DL scheduling frameworks to fine-grained alloca-
tion of resources based on runtime performance, achieving
low training latency and high cluster efficiency. However,
our proposed scheduling framework, GENIE, can support
diverse DL task types, including training and inference.
Moreover, users’ QoS requirements are considered in the
design of our scheduling policy, which is closer to real DL
R&D scenarios.

Cluster Scheduling. Most novel schedulers have been
proposed for cloud computing or HPC systems [15, 16, 39,
40]. However, the jobs are treated as black boxes for these
schedulers. Existing schedulers allocate resources based on
historical information or simple heuristics methods. [15]
focus on the dependency structures of tasks and adopt the
heuristics method to pack and schedule them. [16] explores
the similar patterns of diverse tasks based on historical
information and scheduling related batch tasks to improve
system utilization. Compared with the above mentioned
research, the scheduling design in this paper is based on
a comprehensive characterization for DL models. According
to the domain-specific knowledge of DL tasks, our proposed
scheduling policy can predict the relationship between
resource provision and its impacts on task performance,
achieving high system utilization.

Performance Estimation and Modeling. [22] made the
first attempt to explore the performance of DL tasks on a
commodity GPU-based platform and has benefits for future
WSC design. [26] proposed performance models to predict
the model convergence and runtime by online monitoring.
In this paper, considering the unpredictability of conver-
gence and accuracy for online training scenarios, we prefer
modeling the processing rate and response latency of DL
tasks. Based on a lightweight offline profiler, the prediction
model can achieve high prediction accuracy and provide
support for our QoS-aware scheduling algorithm.

QoS Scheduling. [41] presents a combination of pro-
filing and job structure knowledge for scheduling to meet
users’ QoS automatically. [42] proposes a QoS scheduling
solution by dynamic provision based on performance mod-
els derived from historical and dependency information. In
our work, considering the emergencies of varying degrees,
we define three classes of users’ QoS. A high user’s QoS
means high priority for resource allocation and execution.
During the whole scheduling process, the scheduling order
is dynamically adjusted according to the users’ QoS in order
to achieve a high QoS guarantee.

9 CONCLUSION

This paper presents GENIE, a QoS-aware scheduling frame-
work for a DL R&D platform in most EIUs. GENIE provides
lightweight offline profiling and online dynamic scheduling
on GPU clusters. Using the lightweight offline profiler,
GENIE can provide a prediction model according to the
domain-specific information of DL tasks derived from a
comprehensive characterization. Based on the prediction
models, GENIE dynamically identifies the best placements
for DL tasks and schedules them on the GPU cluster.
Numerous experiments on real clusters and simulations
demonstrate that GENIE achieves a higher QoS guarantee
and system utilization than other baselines. In the future,
we plan to merge GENIE into cluster manager frameworks
like Kubernetes, Yarn, or Mesos.
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