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Abstract Understanding the scalability of parallel programs is crucial for
software optimization and hardware architecture design. As HPC hardware is
moving towards many-core design, it becomes increasingly difficult for a par-
allel program to make effective use of all available processor cores. This makes
scalability analysis increasingly important. This paper presents a quantitative
study for characterizing the scalability of sparse matrix-vector multiplications
(SpMV) on Phytium FT-2000+, an ARM-based HPC many-core architecture.
We choose SpMV as it is a common operation in scientific and HPC applica-
tions. Due to the newness of ARM-based many-core architectures, there is little
work on understanding the SpMV scalability on such hardware design. To close
the gap, we carry out a large-scale empirical evaluation involved over 1,000 rep-
resentative SpMV datasets. We show that, while many computation-intensive
SpMV applications contain extensive parallelism, achieving a linear speedup
is non-trivial on Phytium FT-2000+. To better understand what software and
hardware parameters are most important for determining the scalability of a
given SpMV kernel, we develop a performance analytical model based on the
regression tree. We show that our model is highly effective in characterizing
SpMV scalability, offering useful insights to help application developers for
better optimizing SpMV on an emerging HPC architecture.
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1 Introduction

Multi-core and many-core architectures offer the potential of delivering scal-
able performance through parallelism. Realizing such potential is, however,
not trivial due to multiple factors, including available application parallelism,
limited working sets, and communication overheads. Among these factors, the
share memory resources, such as shared caches, is often a performance bottle-
neck for many application domains due to memory contention [23].

The memory bandwidth is increasingly becoming a limiting factor for the
high-performance computing (HPC) domain. On the one hand, there are more
and more processor cores that are integrated into a single chip, to provide more
computation power. On the other hand, using a larger number of processor
cores is likely to raise memory contention and increase the pressure on the
memory bus. As a result, it is not always beneficial to use a large number of
cores even if abundant parallelism is available [17]. To unlock the potential
of multi- and many-core architectures and to justify the further specialization
of processor design, it is important to understand the impact of the shared
memory resources on application scalability.

In this paper, we present a quantitative approach to characterize the scal-
ability of sparse matrix-vector multiplications (SpMV) on HPC many-core
architectures. SpMV is one of the most common operations in scientific and
HPC applications [37]. It is highly challenging to optimize SpMV on parallel
architectures [48], due to several reasons like irregular indirect data access-
ing, sensitivity to the sparsity pattern of the input matrix, and the subtle
interaction of the matrix storage format, the problem size, and hardware.
While there is considerable work on finding the right sparse matrix storage
format [4, 18, 19, 24, 30], little effort has been spent on characterizing and un-
derstanding the scalability of SpMV on multicore architectures. As the HPC
hardware is firmly moving towards many-core design, it is crucial to know when
it is beneficial to use the available cores and how the SpMV performance will
scale as we increase the number of cores to use.

Our work specifically targets the ARMv8-based Phytium FT-2000+ many-
core architecture. Because ARM-based processors are emerging as an inter-
esting alternative building block for HPC systems [20, 38, 49], it is important
to understand how the hardware microarchitecture design affects the SpMV
scalability. Having such knowledge is useful not only for better utilizing the
computation resources, but also for justifying a further increase in the proces-
sor core provision on a single chip.

In this work, we conduct a comprehensive evaluation and analysis to study
the scalability of SpMV on the latest FT-2000+ many-core. Our study mainly
targets the Compressed Sparse Row (CSR) storage format. We choose CSR
because it is a widely used representative storage format for sparse matrices
in scientific computing. Since there are many variations of the CSR format,
our optimization has great practical significance and can easily be extended
to other CSR-extended formats.
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Fig. 1 A simple example of SpMV with a 4 × 4 matrix (nnz = 8) by a 4 × 1 vector. The
product of this SpMV is a 4× 1 vector.

Our experiment shows that despite many SpMV applications contain ex-
tensive parallelism, they often fail to achieve a linear speedup on FT-2000+.
To character what affects the scalability of SpMV, we collect extensive profil-
ing information (through hardware performance counters) from a large-scale
experiment involved over 1,000 representative sparse datasets. With this exten-
sive set of profiling data in place, we develop a regression-tree based analytical
model to capture what information is useful for reasoning about the scalability
of SpMV. We show that our analytical model is highly accurate in revealing
what affects the SpMV scalability on FT-2000+. We demonstrate that our
model can provide useful insights to guide the application developers to better
optimize SpMV on an emerging ARMv8-based many-core architecture.

To summarize, this paper makes the following contributions. It is the first
to

– characterize the scalability performance of SpMV on FT-2000+, an emerg-
ing ARMv8-based many-core architecture for HPC;

– use machine learning techniques to correlate and analyze how hardware
micro-architecture features affect the SpMV scalability.

– show how machine learning can be used to develop a performance profiling
tool to guide the optimization of SpMV on ARM-based HPC architectures.

2 Background and Motivation

In this section, we first introduce the SpMV and its sparse matrix storage
formats and then explain the motivation of this work.

2.1 Sparse Matrix-Vector Multiplication

A SpMV operation can be defined as y = Ax where the input is a sparse
matrix A (m × n) and a dense vector x (n × 1), and the output is a dense
vector y (m × 1). Figure 1 shows an illustrative example of SpMV, where
m = n = 4, and the nonzeros nnz = 8.
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Table 1 The sparse matrix storage formats targeted in this work and the corresponding
data structures for the example shown in Figure 1.

Representation Specific Values

CSR
ptr = [0, 2, 5, 6, 8]

indices = [1, 2, 0, 2, 3, 2, 1, 2]
data = [5, 2, 6, 8, 3, 4, 7, 1]

CSR5

ptr = [0, 2, 5, 6, 8] tile ptr = [0, 1, 4]
tile des : bit flag = [T, T, F, F |T, T, T, F ],

y off = [0, 1|0, 2], seg off = [0, 0|0, 0]
indices = [1, 0, 2, 2|3, 1, 2, 2]

data = [5, 6, 2, 8|3, 7, 4, 1]

2.2 Sparse Matrix Storage Formats

In our work, we mainly consider the SpMV based on CSR, the most com-
monly used format for storing sparse matrices, and its improved counterpart,
CSR5 [24]. The example matrix mentioned above in these two formats is shown
in Table 1.

CSR. The compressed sparse row (CSR) format explicitly stores column in-
dices and nonzeros in arrays indices and data, respectively. It uses a vector
ptr, which points to row starts in indices and data, to query matrix values.
The length of ptr is n row+ 1, where the last item is the total number of the
nonzero elements of the matrix.

CSR5. The CSR5 format aims to obtain a good load balance for matrix
value queries [24]. It achieves this by partitioning all nonzero elements into
multiple 2-dimensional tiles of the same size. corresponding to the width and
the height of the title respectively. Later in this paper, we show how CSR5 gain
better scalability than CSR by more uniform and reasonable task assignment
in multi-threaded SpMV.

2.3 Motivation

We run the multi-threaded SpMV in CSR on a x86-based Xeon multi-core
(Intel Xeon E5-2692) and a ARMv8-based Phytium multi-core (FT-2000+).
Figure 2 shows the SpMV performance for the bone010 dataset when using
threads ranging from 1 to 16.

We observe that, on Xeon the speedup increases linearly when using 1
thread upto 4 threads, while the performance increase is very slight when us-
ing furthermore threads. At this moment, the SpMV performance on Xeon is
limited by the off-chip memory accesses. By contrast, the SpMV scalability
is rather different on FT-2000+. We see a very slight performance increase
when using 1, 2, and 4 threads. Thereafter, we notice a quasi-linear speedup
until using 16 threads. We believe that these performance behaviours are de-
termined by the interactions of the SpMV code, the input sparse matrix, and
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Fig. 2 Performance comparison of SpMV on two multicore processors. The x-axis represents
the number of threads and the y-axis represents the obtained performance (in Gflops).

Fig. 3 A high-level view of the FT-2000+ architecture. Processor cores are groups into panels
(left) where each panel contains eight ARMv8 based Xiaomi cores (right).

the underlying micro-architecture. In this work, we will look into the factors
which impact the SpMV scalability on FT-2000+.

Given that the performance ‘odds’ appear when using fewer than 8 threads,
we will focus on scalability characterization on a core-group within a panel of
FT-2000+ (see Figure 3 and Section 3).

3 Experimental Setup

In this section, we will introduce the hardware platforms, the installed system
software, and the datasets used in this work.

Hardware Platforms. As depicted in Figure 3, FT-2000+ integrates 64
ARMv8 based Xiaomi cores. Its Mars II microarchitecture offers a peak per-
formance of 588.8 Gflops for double-precision operations, with a maximum
power consumption of 96 Watts. The CPU chip has eight panels with eight
2.3GHz cores per panel. Each core has a private 32KB L1 data cache, and
a 2MB L2 cache is shared among four cores (core-group). The panels are
connected through two directory control units (DCU) [1].

Systems Software. We run a customized Linux OS with Linux Kernel v4.4
on FT-2000+. For compilation, we use gcc v6.4.0 with the “-O3” compiler
option. We use the OpenMP threading model, using 1-4 threads on FT-2000+.

Datasets. We use 1008 square matrices (with a total size of 80 GB) from
the SuiteSparse matrix collection [10]. The number of nonzero elements of the
matrices ranges from 100K to 200M [22]. The dataset includes both regular
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Fig. 4 The overall speedup of SpMV in 1-4 threads on FT-2000+. The x-axis labels different
sparse matrices.

and irregular matrices, covering domains from scientific computing to social
networks [25].

4 SpMV Scalability Results and Modelling

In this section, we show the overall scalability performance of SpMV. To
identify the impacting factors of SpMV scalability on FT-2000+, we build
a regression-tree based model, which automated relates features to speedup
(normalized to a single thread). We use key features collected from hardware
performance events and the input sparse matrix datasets.

4.1 Overall Performance Results

Figure 4 shows the overall speedup of SpMV with 1-4 threads on a core-group
of FT-2000+. The x-axis represents different sparse matrices. Although the
achieved speedup for most matrices increases over the number of threads,
we note the performance is far less than the linear speedup. Most speedup
numbers lie between 1 and 2, and a very small portion of numbers are beyond
that. Also, the obtained speedup is hyper-linear for some datasets. This is
because the dataset is so small that it can be hold within the shared L2 data
cache. Table 2 shows a statistical profile of the average speedup when using
multiple threads (normalized to that of a single thread). We see that the
average performance of SpMV only improves 50% from 1 thread to 2 threads
and does even not double the number when using 4 threads. The scalability
of SpMV on FT-2000+ is far less than our expectation, which motivates us to
identify the impacting factors behind it.
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Table 2 The average speedup(x) of SpMV with multi-threads over a single-thread.

#threads 1 2 3 4

speedup 1.0x 1.50x 1.77x 1.93x

4.2 Scalability Modelling

To find the impacting factors for scalability, we use an empirical approach
to manually analyze the performance behaviours. As an alternative, we use
a machine-learning based approach to build a model and then let the model
tell us which feature plays a role in scaling SpMV on FT-2000+. Instead of
hand-crafting an analytical model that requires expert insight into low-level
hardware details, we employ machine learning techniques to automatically
learn the correlation between features and the SpMV (speedup) performance.

Building and using the regression tree model follows three main steps: (i)
generate training data, (ii) train a regression model, and (iii) find the factors
with a large weight. Given that our model is used as a tool for analysis rather
than for predicting the speedup of SpMV, we make the best use of the collected
data by selecting 90% samples for training, instead of the usual (80%, 20%)
data splitting between model training and model testing.

4.2.1 Collecting Training Data

To generate training data for our model, we used 1008 sparse matrices from
the SuiteSparse matrix collection. We run the CSR-based SpMV a number of
times until the gap of the upper and lower confidence bounds is smaller than
5% under a 95% confidence interval setting. The code is run with 1, 2, 3, and
4 threads, with each pinned to a fixed core. We then record the SpMV execu-
tion time for computing speedup (normalized to a single thread) and obtain
hardware performance counters by using PAPI (Performance Application Pro-
gramming Interface [39]) for each training sample. As the last step, we collect
key values for each input dataset to capture its features.

Table 3 shows our selected features from both sparse matrix structure
and hardware events. These important matrix features introduced in [5] are
proved to be effective in capturing the spatial patterns of the matrix. The raw
hardware counters we collected are related to performance [28]. To improve the
model performance, we calculate a set of derived features based on raw counter
values and use them as the input of the model. There are two customized
features:L2 DCMR change and job var. The former indicates the changes of
L2 DCMR from one to four threads. As for the L2 DCMR with four threads, we
use the L2 DCMR on the slowest thread instead of the total one; the job var

represents the degree of nonzero distribution imbalance across threads (the
theoretical value is 0.25 for 4 threads).
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Table 3 The selected features and their descriptions.

Features Description

n rows number of rows
nnz max maximum # nonzeros per row
nnz avg average #nonzeros per row

matrix features

nnz var variance # nonzeros per row
L2 DCM L2 data cache misses
L2 DCA L2 data cache accesses
L1 DCM L1 data cache misses
L1 DCA L1 data cache accesses
FR INS floating point instructions executed
TOT INS total instructions executed

raw
hardware counters

TOT CYC total cycles
L1 DCMR L1 data cache miss rate
L2 DCMR L2 data cache miss rate
IPC instructions per cycle
L2 DCMR change the change of L2 DCMR

derived
hardware counters

job var maximum # allocated nnz ratio per thread

4.2.2 Building The Model

For simplicity, we only use performance counters collected when using one
thread and four threads. The achieved speedup and the corresponding fea-
ture set is taken as the input of the supervised learning algorithm built in
scikit-learn. The learning algorithm tries to find a correlation between the
features, performance values and achieved speedups. The output of this train-
ing process is a regression-tree based model, which helps to reveal the factors
that affect SpMV scalability.

4.2.3 Identifying the Impacting Factors

By using the feature importance module of scikit-learn for the new-built
regression tree model [33], we can obtain the top three factors that most affect
the SpMV scalability: the nonzero allocation, the shared L2 cache, and the
nnz variance across rows, where nnz denotes the number of nonzero. Figure 5
shows how these factors impact the SpMV speedup. In the next section, we
will give a detailed analysis of the scalability with our trained model.

5 Scalability Analysis, Insights and Optimizations

In this section, we first examine how individual factor suggested by the model
(Section 4.2.3) impacts the SpMV speedup. We then conduct an in-depth
analysis of how the factors have an impact on the SpMV scalability with four
representative matrices. We choose the four datasets because their speedups
are mainly limited by separate factors. At last, we introduce several potential
optimizations inspired by the scalability results.
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Fig. 5 A tree picked from the regression forests intuitively shows how the factors impact
the speedup of SpMV.

5.1 The Factors Impacting SpMV Scalability

Based on the data obtained from executing SpMV on datasets, we draw scatter
plots between each impacting factor and the speedup, which are shown in
Figure 6. It is clear that the speedup generally shows a gradual decline trend
when the nonzero allocation across threads becomes more unbalanced, the
L2 DCMR increases from one thread to four threads, or the nonzero variance
of sparse matrices go larger.

The three bar charts in Figure 6 show the statistical results of integral
histogram of the speedup results, which is consistent with the results in the
left part of Figure 6. There are also some cases that do not meet our expecta-
tions. For example, Figure 6(d) shows that the speedup even decreases when
L2 DCMR change is less than 0. We argue that it is a comprehensive product of
multiple impacting factors, which needs further investigation. In this following,
we will analyze how each factor has an impact on the SpMV scalability.

The balance of the nonzero allocation. When running the conventional
SpMV code in the CSR format, the nonzero allocation across threads depends
on the sparse matrix structure. As shown in Figure 6(b), when job var is
greater than 0.45, which means that the nonzeros are clustered within some
rows to be dispatched to a specific thread, load imbalance will occur and this
thread will take substantially more time than the other threads. Thus, the
unbalanced nonzero allocation among threads will put a limit on the achieved
speedup, because the SpMV performance is determined by the slowest thread.

Taking exdata 1 in Table 4 for instance, the second thread will consume
more than 99% of the nonzeros when using 4 threads, and thus the achieved
speedup stays around 1.02x in such a case.

The shared L2 data cache. Leveraging shared resources on multi-core ar-
chitectures improves the utilization of a hardware component and can improve
overall system throughput. On the one hand, such a design as cache sharing
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Fig. 6 The correspondence between the three identified factors and speedup of SpMV. The
y-axis in subfigure (b), (d) and (f) is interval average values of speedup. In subfigure (e) and
(f), the x-axis represents the value of nnz var after normalization processing.

can lead to positive interference, i.e., one thread brings data into the shared
cache which is accessed by other threads [13]. The debr in Table 4 gives an
intuitive example for the benefits of shared memory. Recalling the SpMV al-
gorithm, y = Ax, where the dense vector x is the data structure to be reused
across threads. This occurs because different threads deal with distinct matrix
rows of A, while x is shared by all threads. When running SpMV on debr

with 4 threads on FT-2000+, with the L2 cache sharing within a core-group,
threads[1, 3] and threads[2, 4] can share the dense vector x so as to increase
the data reuse and improve the performance of multi-threaded SpMV.

On the other hand, cache sharing can have a negative impact on the per-
thread performance from the perspective of resource competition. The L2
cache sharing on FT-2000+ may cause threads to evict data of other threads
when running SpMV, which means that the ‘victim’ threads will experience
more cache misses than their isolated execution. And we find that the degree
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Table 4 The concise description of four representative matrices.

matrix job var L2 DCMR change nnz var sparsity structure speedup

exdata 1 0.992 0.000 649.627 1.018x

conf5 4-
8x8-20

0.250 0.056 0.000 1.351x

debr 0.250 -0.001 0.003 2.241x

appu 0.252 -0.001 36.494 1.479x

of the negative impact from cache sharing is related to the average nonzeros
per row (nnz avg). In general, a larger nnz avg leads to more competitions.
We argue that this is because nnz avg represents the need for dense vector x
per row when running SpMV, which means that the data evicting increases
as nnz avg goes up. As shown in Figure 6(c), as L2 DCMR increases for most
matrices, we note a corresponding decrease in speedup.

To summarize, we note that the impact of cache sharing on SpMV relates
to specific input matrices and their structures. In Table 4, the SpMV gains a
much larger speedup on debr (2.241x) than on conf5 4-8x8-20 (1.351x) with
4 threads. On the one hand, the data reuse that benefits from the distribution
of nonzeros makes contributions; on the other hand, the average nonzeros per
row of conf5 4-8x8-20 is larger than its counterpart (39 vs 4), which means
that runnig SpMV on conf5 4-8x8-20 generates more contention with shared
L2 cache. These two reasons both lead to a higher increase on L2 DCMR of
conf5 4-8x8-20 than debr from one thread to four threads.

The nonzero variance across rows. The utilization of the dense vector
x has a significant impact on the SpMV scalability. However, to obtain the
correlation of nonzero distribution row by row is time-consuming for large-
scale sparse matrices. As a result, we choose the nonzero variance across rows
instead. This metric can reflect the regularity of input matrices and capture
how the dense vector x will be reused.

Note that the speedup is calculated by dividing the single-thread execution
time by the that of multiple threads, and the latter depends on the thread that
spends the most time. Thus, an even distribution of the SpMV execution across
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Fig. 7 The comparison of job var and speedup (normalized to that of a single thread) of
SpMV in different storage formats. The input matrix is exdata 1.

threads typically leads to satisfactory SpMV scalability. However, we observe
that the balanced nonzero allocation across rows does not necessarily lead to a
large speedup like matrix debr listed in Table 4. This is because the different
nonzeros distribution across rows (and threads) equally has an impact on the
execution time. For debr, despite the fact that nonzeros are evenly allocated
across threads, the large nnz var results in different reuse of vector x, and
leads to different execution behaviours across threads and an unsatisfactory
speedup. As shown in Figure 6(f), matrices with smaller nnz var tend to bring
a larger speedup. This can be equally explained that a smaller nonzero variance
across rows can ensure that the workloads can be more evenly distributed and
better exploit the locality of vector x.

5.2 Potential Optimizations

5.2.1 Using storage formats with balanced nonzero allocation

The load imbalance is mainly related to the adopted CSR format and the
thread scheduling policy. In most cases, we use the static scheduling policy
because the overhead of thread communication with dynamic scheduling is
nonnegligible. To overcome the issue of load imbalance, we choose to use stor-
age formats that divide nonzeros equally among threads. The CSR5 format
is selected because it is designed to solve the load imbalance in CSR-based
SpMV, and its data structure is shown in Section 2.2.

We choose matrices whose scalability suffers from load imbalance by its
job var value (≥ 0.45), and then run CSR5-based SpMV on the matrices. The
results show CSR5 achieves an average improvement of speedup from 1.632x
to 2.023x. Figure 7 shows the performance result on exdata 1. Compared
with the CSR format, load imbalance is significantly mitigated by running
the CSR5-based SpMV with job var decreasing from 0.992 to 0.298. As a
consequence, the speedup gains an improvement from 1.018x to 1.468x. CSR5
performs better because the nonzeros are divided and organized in small tiles
instead of the row manner. Therefore, when dealing with irregular matrices,
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Fig. 8 The SpMV scalability improvement benefited from our optimizations on
conf5 4-8x8-20.

despite that the rows with a large number of nonzeros may be concentrated like
exdata 1, they will not be assigned to the same thread. Thus, the workloads
can be dispatched in a much more even manner across threads and improve
the scalability of SpMV.

5.2.2 Avoiding the contention from shared memory resources

Based on the analysis in Section 5.1, we know that the sharing L2 cache of
FT-2000+ has a great impact on the scalability of SpMV. Under most circum-
stances, the sharing cache causes more contention, which leads to a speedup
decline. To alleviate the pressure from cache sharing, we bind threads to mul-
tiple cores that are located in different core-groups (Section 3). In this way,
we can ensure that each thread occupies a complete L2 cache without data
interference from other threads.

When running SpMV on all the matrices in the private-L2 mode, we can
achieve a considerable average speedup of 3.40x on 4 threads, compared with
1.93x on one core-group (Table 2). As can be seen from Figure 8, the speedup
with private L2 caches significantly outperforms its counterpart of sharing an
L2 data cache on conf5 4-8x8-20, with a speedup increasing from 1.35x to
3.61x. This is because using private L2 caches can effectively reduce the L2
cache miss from 30% to 25%. But this approach of using a private L2 data
cache will not bring a performance increase for all matrices. Taking another
matrix asia osm for example, the speedup only increases by 2.6% from 3.170x
to 3.254x with private L2 caches. We reckon that the average nonzeros per
row of this matrix is less than 3, so that the shared L2 cache can meet with
their memory accessing need.

5.2.3 Exploiting locality-aware SpMV storage formats

Based on the aforementioned analysis, we know that merely achieving balanced
nonzero allocation is insufficient, and the locality of x in SpMV needs to be
exploited to achieve better scalability. Here is our idea to design a novel storage
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Fig. 9 The synthesized sparse matrix with poor locality utilization of the vector x (left)
and the corresponding matrix in ideal locality-aware SpMV storage format (right).

Table 5 The performance and scalability of SpMV by exploiting the locality of x. The rows
of the matrix is set to 64*6400, with the average nonzeros per rows being 4.

single-thread Perf. 64-thread Perf. speedup

synthesized matrix 0.419 Gflops 15.907 Gflops 37.96x
transformed matrix 0.585 Gflops 27.306 Gflops 46.68x

format that can make good use of the locality: we bring together the rows with
a similar nonzero distribution, so that the vector x can be reused.

To explore the feasibility of designing the locality-aware SpMV storage for-
mat, we generate a series of matrices of different sizes as shown in Figure 9.
This synthesized matrix has a poor locality of vector x when running SpMV.
And we then transform such matrices to locality-friendly forms by partial re-
ordering. Table 5 shows the result of running CSR-based SpMV on a specific
pair of matrices on FT-2000+. Both single-threaded and multi-threaded perfor-
mance gain significant improvement. Particularly, the 64-thread performance
improves by 71.7% from 15.907 Gflops to 27.306 Gflops. At the same time,
better scalability of SpMV is achieved from 37.96x to 46.68x.

To conclude, we introduce several potential optimizations inspired by the
scalability results, but these are not one-fit-all solutions. This is because there
is an overhead for format conversion, and using multiple private L2 caches
waste extra memory resources. For future work, we will extract a detailed
profile of a given sparse matrix before performing the SpMV computation.
Hopefully, these features will indicate the number and distribution of nonzeros.
Based on this information, we can decide whether to apply these optimizations
or not. Besides, we will try to find an accurate and efficient matrix reordering
that can be applied to design the locality-aware SpMV storage format.
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6 Related Work

Substantial previous work has been conducted to study the SpMV performance
on parallel systems [7, 29, 34, 48]. Mellor-Crummey et. al use a loop transfor-
mation to improve the performance of SpMV on multiple parallel processors,
and this optimization is aimed at the matrices that arise in SAGE [29]. Pinar
et. al propose alternative data structures, along with reordering algorithms
to reduce the number of memory indirections when running SpMV on a Sun
Enterprise 3000 [34]. Williams et. al apply several optimization strategies es-
pecially effective for the multicore environment to SpMV on four multicore
platforms. These works have a significant effect on improving the performance
of parallel SpMV [48]. However, very few works focus on its scalability per-
formance on many-core architectures. Our work fills this gap by providing an
in-depth scalability analysis on FT-2000+. The obtained insights will facilitate
us to design more efficient parallel HPC software and hardware in the future.

Efforts have been made in designing new storage formats for various par-
allel processor architectures including SIMD CPUs and SIMT GPUs [4, 19,
24, 27, 30]. Bell et. al use standard CUDA idioms to implement several SpMV
kernels which can exploit fine-grained parallelism to effectively utilize the com-
putational resources of GPUs, including SIMD-friendly ELL, the most popular
general-purpose CSR and hybrid ELL/COO format that exploits the advan-
tages of both [4]. The CSR5 proposed by Liu et. al is efficient both for regular
matrices and for irregular matrices and is also used in our work to address
the issue of unbalanced loads [24]. Maggioni et. al propose the design of an
architecture-aware technique for improving the performance of the SpMV on
GPU, and based on a variation of the sliced ELL sparse format, they present a
warp-oriented ELL format that is suited for regular matrices [27]. The SELL-
C-σ format is designed by Kreutzer et. al, and this SIMD-friendly data format
is well-suited for a variety of hardware platforms (Intel Sandy Bridge, Intel
Xeon Phi, and Nvidia Tesla K20) [19]. These sparse matrix formats aim to
address the issue of unbalanced load and increase SpMV parallelism, but they
fail to take advantage of the locality of vector x. Our work attempts to answer
this question by providing comprehensive analysis and new insights.

A large number of works have analyzed the sources of poor scalability in
various parallel applications, rather than SpMV [3, 11, 23]. Alam et. al propose
an appropriate selection of MPI task and memory placement schemes to im-
prove performance for key scientific calculations on multi-core AMD Opteron
processors [3]. Liu et. al introduce the notion of memory access intensity to fa-
cilitate quantitative analysis of programs memory behavior on multicores [23].
For the work of Diamond et. al, it not only examines traditional unicore metrics
and but also presents an in-depth study of performance bottlenecks originat-
ing in multicore-based systems. Besides, it introduces a source-code optimiza-
tion called loop microfission to alleviate multicore-related performance bot-
tlenecks [11]. Bhattacharjee et. al [6] predict critical threads, or threads that
suffer from imbalance. They tend to offer more resources to critical threads so
that they run faster. Most of these related works focus on the traditional x86
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multi-core architectures, and very few works are towards the ARMv8-based
many-cores or the SpMV kernel, which is rather promising for the future of
the HPC domain.

Numerous performance analysis tools have been proposed, including Coun-
terMiner and HPCTOOLKIT [2, 26]. By using data mining and machine
learning techniques, CounterMiner enables the measurement and understand-
ing of big performance data [26]. HPCTOOLKIT can pinpoint and quantify scal-
ability bottlenecks of fully optimized parallel programs. Based on statistical
sampling, this tool can introduce with a very small measurement overhead
during performance measurement [2]. Different from these performance tools,
our regression-tree based approach uses both hardware counters (dynamic fea-
tures) and input matrix features (static features), thus brings a comprehensive
understanding of the scalability behaviours.

Other researchers have used performance counters to identify multicore
bottlenecks and optimize applications [23], but no quantitative analysis is per-
formed in those studies. Our work not only conducts detailed scalability anal-
ysis, but also is the first attempt in applying machine learning techniques to
find the impact factors of SpMV scalability on FT-2000+.

Machine learning has quickly emerged as a powerful design methodology
for systems modeling and optimization [41]. Prior works have demonstrated
the success of applying machine learning for a wide range of tasks, including
modeling code optimization [8, 9, 15, 21, 31, 32, 40, 42, 43, 44, 45, 46, 50],
task scheduling [12, 14, 16], processor resource allocation [47], and many oth-
ers [35, 36]. In this work, we employ machine learning techniques to develop
an automatic and portable approach to characterize the scalability of SpMV
on an emerging many-core architecture. We stress that this work does not
seek to advance machine learning algorithms; instead, it explores and applies
a well-established modeling method to tackle the optimization problem for an
important class of applications.

7 Conclusion

This paper has presented an empirical study of SpMV scalability on an emerg-
ing ARMv8-based many-core architecture, Phytium FT-2000+. We conduct an
overall evaluation about the scalability of SpMV on FT-2000+. We develop a
machine learning based model to help find the main factors that lead to the
flat scalability: unbalanced nonzero allocation, shared L2 cache contention
and nonzero variance per row. We use a statistical method to find the rela-
tions between factors and the speedup of SpMV as a verification of our model.
We select representative matrices to explain how these factors give a limit
to the scalability of SpMV on FT-2000+ in an essential way not remain it in
“black box”. Along the line, we give potential optimizations for mitigating
these scalability bottlenecks on SpMV. Our experimental results show that
our optimization can effectively improve the scalability of specific matrices.
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