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Abstract—Deep learning is emerging as a promising technique
for building predictive models to support code-related tasks like
performance optimization and code vulnerability detection. One
of the critical aspects of building a successful predictive model is
having the right representation to characterize the program for
the given task. Existing approaches in the area typically treat the
program structure as a sequential sequence but fail to capitalize
on the rich semantics of data and control flow information, for
which graphs are a proven representation structure.

This paper presents POEM1, a novel framework that auto-
matically learns useful code representations from graph-based
program structures. At the core of POEM is a new graph neural
network (GNN), which is specially designed for capturing the syn-
tax and semantic information from the program abstract syntax
tree and the control and data flow graph. As a departure from
all recent GNN-based code modeling techniques, our network
simultaneously learns over multiple relations of a program graph.
This capability enables the learning framework to distinguish
and reason about the diverse code relationships, be it a data or
a control flow or any other relationships that may be important
for the downstream processing task.

We apply POEM to four representative tasks that require
a strong ability to reason about the program structure: het-
erogeneous device mapping, parallel thread coarsening, loop
vectorization and code vulnerability detection. We evaluate POEM
on programs written in OpenCL, C, Java and Swift, and compare
it against nine learning-based methods. Experimental results
show that POEM consistently outperforms all competing methods
across evaluation settings.

I. INTRODUCTION
Over the last two decades, machine learning has emerged as

a viable means for constructing heuristics for various program-
related tasks including code optimization [1]. There is now
ample evidence showing that machine-learned heuristics can
outperform hand-tuned approaches [2].

A key challenge for applying machine learning to programs
is that it requires programs to be represented as a sequence
of numerical values (such as the number and type of in-
structions) that serve as inputs to a machine learning model.
Traditionally, such program representations were determined
by experts through trials and errors. However, since programs
are syntactically unbounded graph structures and that there is
an infinite number of these potential features, finding the right
features is a non-trivial task.

More recent studies have leveraged the advances in deep
learning (DL) to model and reason about code structures [3],
[4], [5], [6], [7], [8], [9]. Compared to classical machine
learning approaches, DL has the advantage of not requiring ex-
pert involvement to manually tune representations for program
structures; instead, it automatically captures and determines
them from training samples [10].

1POEM = Deep Code Modeling.

Existing DL-based approaches for program modeling typ-
ically utilize recurrent neural networks (RNN), like the long
short-term memory (LSTM) or a variant of it, to model code
structures [4], [9]. Such approaches work by treating source
code and its structure – for example, the abstract syntax tree
(AST) – as a sequence of tokens. However, LSTM is designed
for processing a sequential sequence [11] and is ill-suited for
capturing the program control and data flows – which should
be better represented as a graph instead of a sequence of
tokens. As a result, prior methods only capture the shallow,
textual structure of the source code and fail to capitalize on the
rich and well-defined semantics of the program structure. To
better model the complex data and program structures – which
were traditionally represented as graph structures in compilers
for code analysis – we need an approach that could directly
operate on and learn from the graph representation of the code.
Doing so will allow the learning framework to preserve and
reason about much of the control and data flow information
that is essential for many program-related tasks.

The first effort in this direction is the recent work presented
in [12], which employs a vanilla graph neural network (GNN)
to learn representations from the graph representation of the
AST or the control-data flow graphs (CDFGs). This is achieved
by propagating information along the graph edges defined in
a graph adjacency matrix. While there may exist multiple
code relationships (edges) among any given node pair, their
approach only captures the graph connectivity, leaving the
graph edges as untyped. As such, it cannot tell if a direct
connection between two nodes is a control or a data flow,
neither distinguish other relationships like order for non-
commutative operations. Intuitively, such information would
be essential for characterizing the program behavior for many
code-related tasks. By ignoring the different relationships, their
GNN approach gives marginal improvement or even worse
performance compared to the LSTM alternatives [12].

We present POEM, a better approach for modeling code
structures. POEM operates on graph representations of the pro-
gram with the capability to learn and aggregate multiple code
relationships. It is designed to maintain sequential information
like token order and operand values when trading sequential
representation for graph representations. POEM automatically
extracts such information from the AST and the CDFGs.
It then combines and abstracts the extracted information to
generate a numerical feature vector that captures much of the
essential information of the syntax and semantics of the target
program. We use the generated embeddings as an input to
a standard neural network to support downstream processing
tasks like code optimization and vulnerability detection.



As a departure from prior work [12], [13], [14], POEM
uses graphs to represent both the syntactic and semantic
information of programs and employes graph-based learning
methods to learn to reason over multiple graph structures.
With POEM, syntax information is encoded from the AST
and IR nodes. To maintain much of the sequential syntac-
tic and semantic information, we augmented the AST with
additional edges. These edges allow us to encode sequential
syntactic relationships (e.g., “token before/after”) and semantic
relationships (e.g., “variable last used here”, “this statement
is guarded by an if condition”). In addition to the AST, we
also record the control and data flow information from the
CDFG. Intuitively, information collected from the source code
is language-dependent but agnostic to compiler implementa-
tions. By contrast, data collected from the IR captures much
of the lower-level, language-agnostic but compiler-specific
information that could not be directly obtained from the
source code. By combining such information, we improve the
generalization ability of the learning framework, as different
tasks may require knowledge at different levels.

Unlike [12] that it only uses an adjacency matrix to encode
the node connectivity of the AST or CDFG, we encode
different node relationships, e.g., whether it is a child-parent
connection on the AST or a data flow edge in the CDFG, in
different matrices and relation graphs. At the core of POEM
is a novel graph neural network that can learn over multiple
relationships (or edge types) simultaneously. By representing
the input program as multiple relation graphs with explicit
control and data flows or syntactic information, POEM captures
a greater range of intra-program relations than prior graph
representations. A key advantage of POEM is that it uses
a learnable function to aggregate information for individual
relation graphs. As the aggregation function is tuned for each
relation graph, it can capture each specific code relationship
more precisely. This richer set of relationships improves the
model’s ability in learning useful program representation,
which in turns leads to better performance of downstream
processing tasks. We show that POEM is highly effective in
learning abstracted code representations, allowing us to solve
various tasks with performance better than state of the arts.

We demonstrate the benefits of POEM by applying it to
four representative tasks that require a strong ability to reason
about the program structure at different levels: heterogeneous
device mapping, GPU thread coarsening, loop vectorization
and code vulnerability detection. We evaluate POEM on bench-
marks written in OpenCL, C, Java and Swift. We compare
POEM against a wide range of machine-learning techniques.
Experimental results show that POEM consistently outperforms
competing methods across tasks and programming languages,
by giving stronger performance improvement and demonstrat-
ing a better generalization ability across evaluation tasks.

This paper makes the following contributions:
• It presents the first graph-based learning framework2 that

can simultaneously model multiple edge types of the

2Code and data are available at: [url redacted for double-blind review.]
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Figure 1. POEM operates on the program graph matrices and vertex represen-
tations derived from the AST and CDFG. It uses the POEM-GNN to extract
useful program representations (i.e., graph embeddings), which are encoded as
vectors of numerical values. The embedding vectors and the optional auxiliary
input are concentrated and normalized and passed to decision network for a
given prediction task.

program graph (Section II);
• It demonstrates how to use multiple graphs to represent

both the syntactic and semantic structures of programs to
support graph-based deep learning (Section II-C);

• It is the first work showing how a general graph-based
learning framework can be developed to deliver consis-
tently better performance over LSTM-based alternatives
across a range of code-related tasks (Section IV).

II. OUR APPROACH

POEM is designed to directly operate on graph represen-
tations of the AST extracted from the source code, and the
CDFG obtained from the compiler IR. As we will show
later in the paper, POEM can adapt to different programming
languages, hardware platforms and tasks.

A. Overview of POEM

Figure 1 depicts the architecture of POEM. It takes as
input the program source code. It first uses a source rewriter
extended from [4] to normalize the identifiers. Next, it builds
the AST and CDFG using standard compiler passes. We extend
the standard AST with additional edges to carry data and
control flow information at the source code level (Section
II-C). The AST and CDFG are presented as directed multi-
graphs, where statements, identifiers, and immediate values are
vertices, and a direct relationship (e.g., parent-child, data or
control flow, etc.) between two vertices is recorded as an edge.
As there may exist multiple relationships (or edges) among a
pair of vertices, we use a relation graph to record a specific
type of relationships. In this work, we wish to capture 10
relationships from the AST and CDFG (Section II-C), leading



Table I
CODE RELATIONSHIPS CAPTURED BY POEM

Source Relationships

AST ASTChild, NextToken, ComputedFrom, GuardedBy,
Jump, LastUse, LastLexicalUse

IR Sequential-IR flow, data flow, and control flow

to 10 relation graphs. The vertex connectivity of a relation
graph is represented as a program graph matrix (Section II-D).

The POEM-GNN takes in the program matrices and initial
vertex (or node) representations to learn program represen-
tations called embeddings that are represented as a vector
of numerical values. Like [4], the user can also optionally
supply auxiliary inputs to give additional information about
runtime parameters. We concentrate the graph embeddings and
ancillary data to form a fixed-length feature vector, which is
first normalized and then passed to a heuristic model (based
on a standard fully-connected, dense neural network) to make
a prediction. POEM-GNN and the dense network are trained
together so that the graph representation is tuned for the task.

Unlike [12] that is only able to model the node connectivity,
we extend the GNN to model multiple edge types (e.g.,
control, data, jump, token sequence, etc.). This capability
allows POEM to distinguish different relationships of the code,
whether it is an if branch or a function call. In Section IV, we
show that our approach consistently outperforms prior methods
that are based on the vanilla GCN [12] or LSTM [4].

B. AST and CDFG Construction
We construct the AST from the standardized source code

using a compiler front-end parser (e.g., Clang for C). We
construct the CDFG from the compiler IR after applying
standard compiler data-flow analysis and optimizations like
dead-code elimination, constant propagation, and common
subexpression elimination. An AST contains syntax nodes
and syntax tokens. The former corresponds to nonterminals
in the language grammar, e.g., an if statement (IfStmt)
and function names; and the latter corresponds to terminals
like literals and constant values. The CDFG captures semantic
information that reflects standard compiler transformations.
Figures 2(b) and 2(c) respectively show the LLVM IR and
the extracted CDFG for the OpenCL kernel (after source code
rewritten) given in Figure 2(a). To simplify the IR, we replace
identifiers with its type. For example, %4 at lines 3 and 5 of
Figure 2(b) will be replaced with its data type i32.

C. Code Relationships
We record ten relationships from the AST and the IR, listed

in Table I. These include relationships that can be directly
obtained from the CDFG, like the sequential order of the IR
instructions, and the control and data flow. We also augment
the AST with six additional edges, described as follows.

A standard AST has just one type of edges, i.e., the
ASTChild edge that connects the children nodes with their
parents. To capture additional syntax and data and control
flow information of the AST, we introduce six additional

1 __kernel void A(__global uint4* a, __global
uint4* b) {

2 unsigned int d = get_local_id(0);
3 if (d > 0) {
4 b[d] = a[d] + a[d + 1];
5 } else {
6 b[d] = 0;
7 }
8 }

(a) An example OpenCL kernel

1 define void @A(i32 ,i32) {
2 %3 = tail call i64 @get_local_id(i32 0)
3 %4 = trunc i64 %3 to i32
4 %5 = icmp eq i32 %4
5 %6 = and i64 %3
6 br i1 %5, label %15, label %7
7 ...
8 %16 = phi i32 [%14, %7], [zeroinitializer

, %2]
9 %17 = %1, i64 %6

10 store %16, %17
11 ret void
12 }

(b) LLVM IR
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Figure 2. A simple, standardized OpenCL kernel (a), and the corresponding
LLVM IR (b), CDFG (c) and augmented AST (d).

edges to the AST, following the method described in [15].
The additional edges are essential because they maintain local
sequence order such as the ordering of variable use and
operations. As the AST edges do not induce an order on
children of a syntax node, we add NextToken edges to
connect each syntax token to its successor. This edge is used
to capture the order of opcode and operands for statements.
For each assignment, v = expr, we connect v to all variable



tokens occurring in expression, expr, using ComputedFrom
edges. We connect each AST token of a variable to the
variable’s enclosing guard expressions using a GuardedBy
edge. For example, for the if statement in Figure 2(a), we add
a GuardedBy edge from b to the AST node corresponding
to d > 0. We use a Jump edge to connect variables that
have control dependencies. The GuardedBy and Jump edges
allow us to record the relation of diverging control flow. We
connect all uses of the same variable using LastUse edges to
capture the use of variables, where a special case is variables
in if statement and we connect such type of variables using
LastLexicalUse edges. For instance, for the if statement
in Figure 2(a), we would link the two occurrences of d: one
in the loop head, the other in the loop body. Figure2(d) shows
the resulting AST after processing the OpenCL kernel given
in Figure2(a), which is augmented with the additional edges.

Finally, for each graph edge, we also add a respective
backward edge (by transposing the adjacency matrix), dou-
bling the number of edges and edge types. These backward
edges help with propagating information across POEM-GNN
(Section II-F) and make the model more expressive.

D. Program Graph Matrices

We convert the augmented AST and CDFG to separated
relation graphs - one graph for each of 10 relationships given
in Table I. A relation graph is a directed graph, G = (V,E),
that contains the AST or IR node (vertices), V , and edges E,
that indicates the existence of a given relationship between
two vertices, such as data, control and ASTChild, etc. We
use an adjacency matrix to recode the edge connections of
each relation graph, 10 matrices in total. A value of 1 for
matrix element ei,j , represents there exists a direct connection
or relation from node i to node j, while a value of 0 indicates
the two nodes are not directly connected.
E. Vertex Representations

To capture the syntactic and semantic meanings of the
relation graph vertices, we map every instructions (e.g., AST
nodes like ParamDecl, IfStmt and IR opcodes), constant, and
variable to a vector representation by lookup in a fixed size
embedding table. To do so, we first construct a vocabulary
of frequently appeared words from the training corpus, where
we store the AST and IR extracted from training programs.
As variable and function names and constant values can be
of an arbitrary length, we encode them as tokens (i.e., letters,
symbols and numbers [0-9]). During the model deployment
stage, if a word of the input program is not presented in the
vocabulary, it will be encoded at the token level.

Once we have constructed the vocabulary, we then ap-
ply word2vector [16] to map each word and token of the
vocabulary to an embedding space of integer values. The
word2vector model is trained on training benchmarks of the
target programming language and compiler IR. Training is
largely independent of the optimization task, whose goal is to
map individual words to a point in a latent multidimensional
space where words that are frequently appeared together are
mapped to integer values close to each other in the space.

Doing so allows us to capture much of the syntactic relation
of language constructs. For example, it allows the model to
learn that an if statement must precede an else statement.
In this work, we map each of the tokens and words in the
vocabulary to a single fixed-length embedding vector of 100
features. This vector captures many characteristics of the code,
such as syntax and shadow semantic similarities.

Note that [12] uses only opcodes to compute latent repre-
sentations, but ignoring information like the data types, the
presence of variables and constants, all of which could be
essential for many program-related tasks. POEM is designed
to preserve such information by augmenting the AST and
learning embeddings for these elements.

F. POEM-GNN: A Multi-Rational Graph Neural Network

The adjacency matrices and vertex embeddings of relation
graphs are passed to the POEM-GNN to map the inputs to
a one-dimensional embedding of 100 features. The POEM-
GNN consists of several stacked GNN embedding layers
based on the multi-layer perception (MLP) network, so that it
can incorporate higher degree neighborhoods across relation
graphs. We choose MLP because it is proven to be effective
in learning embeddings for directed graphs [17], but other
neural network architectures (like GRU [18]) can also be used.
We use an AutoML tool [19] to automatically search for the
optimal number of embedding layers from training data (see
also Section IV-E1).

1) Neighborhood aggregation: Each embedding layer fol-
lows a neighborhood aggregation scheme (Figure 3b), where
the d dimensional representation vector, hv , of a graph vertex,
v, is computed by recursively aggregating and transforming the
representation vectors of its neighboring nodes. Vertices are
initialized with the embeddings given by word2vec (Section
II-E) and then exchange information by transforming their
current state and sending it as a message to all neighbours
in the graph. At each vertex, messages are aggregated and
then used to update the associated node representation at the
next embedding layer (referred to as the next iteration) [20].
The added backward edges (Section II-C) enable backwards
propagation of information. After repeating this process of
updating vertex states for a fixed number of iterations a
readout function (Section II-F3) is used to aggregate the vertex
representations to a single numerical vector across multiple
relation graphs to be used as the program representation.

2) Multi-relation modeling: One of the novel aspects of the
POEM-GNN is that it can propagate and aggregate information
across multiple relation graphs, being it control and data at
the IR or AST. As illustrated in Figure 3a, we achieve this
by first using learnable, relation-specific MLPs, MLP`, to
compute new graph states of individual relation graphs through
neighborhood aggregation. Specifically, we use a feed-forward
neural network to implement neighborhood aggregation for
communicating the neighbor embeddings to the reference
vertex (Figure 3b). We then apply a MLP-based aggrega-
tion function, MLPaggr, to aggregate and update states for
identical AST or IR nodes (locating using the matrix indices)
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Figure 3. Using POEM-GNN to learn vertex embeddings. The initial vertex embeddings are generated using word2vec (Section II-E), which are then iteratively
updated during the learning process (a) by aggregating information across neighbors and information from other relation graphs for the same vertex (b).

across relation graphs. Note that our current implementation
aggregates information of AST and CDFG relation graphs as
two separate groups as there is often no one-to-one mapping
between AST and IR nodes after applying standard code
transformations. However, the embeddings learned for the
AST and CDFG will be aggregated during the readout stage.

Formally, we use forward propagation to update the state,
ht
v , for vertex, v, of a relation graph as:

ht+1
v := σ(MLPaggr(

∑
`

∑
(u,v)∈A`

MLP`(h
t
u))) (1)

where A` are the directed edges between a node pair, u, and
v, and MLP` is a relation-graph-specific message propagation
function. Note that MLPaggr and MLP` are learnable func-
tions, that are updated during the training process. The initial
vertex state, h0

v , is created using the word2vec embedding
method described in Section II-E. It is worth noting that
the vertex representation get more refined and global as the
number of iterations increases.

3) Result readout: Once we have performed the neigh-
bourhood aggregation procedure for a fixed number of times
(determined by the number of embedding layers), we will
obtain a new set of embeddings for each vertex. Through this
process, the vertex knows more about their own information
(features) and that of neighbouring nodes. This creates an
even more accurate representation of the relation graphs.
To represent the input AST and CDFG, we use a readout
function to concatenate graph representations across all the
neighborhood aggregation iterations and embedding layers, to
form a single numerical vector, hG, as the global program
representation of all (m = 10) relation graphs, Gi:

hG = CONCAT

(
m∑
i=1

({
h
(t)
v,i|v ∈ Gi

})
|t = 0, 1, . . . , n

)
(2)

where t = 0, 1, ..., n, is the neighborhood aggregation itera-
tions. This readout function produces the global embedding
for all relation graphs, given individual vertex embeddings.

4) Alternative modeling approaches: A naı̈ve alternative
to our approach is to apply a standard GNN to individual
relation graphs and then concatenate the embedding outcomes
of individual graphs. However, this approach does not al-
low information to be exchanged during each neighborhood
aggregation iteration. In Section IV-E2, we show that this

approach gives poor learning performance. As a result, simply
applying the GNN presented in [12] to multiple relation graphs
does address the issues of learning multiple code relations.
We have also considered the recently proposed Relational
Graph Convolutional Network (RGCN) [21] as it can model
different relationships through multi-edge encoding. However,
the RGCN has a significant drawback – the number of pa-
rameters drastically increases for larger graphs. This increase
in parameters can lead to overfitting, especially when the
number of training samples is limited. POEM sidesteps this
problem by restricting the relation-specific learnable function
to a smaller subgraph of the entire program. Furthermore,
unlike the RGCN that only operates on a single graph, POEM
also supports information aggregation of the distinct AST
and CDFG. In Section IV-E2, we show that our approach
outperforms the RGCN alternative.

G. Graph Embeddings
The graph embedding vector, produced by the POEM-GNN,

together with any auxiliary data is first normalized to a
range of 0 and 1 by the normalization layer. Normalization
is essential as it prevents the range of single feature being
a factor in its importance. The normalized feature vector is
then fed to the dense network for downstream processing
(Figure 1), e.g., classification. This final feature vector captures
many characteristics of the code, such as semantic similarities,
control and dependence flows, combinations, and analogies.

H. Train POEM

We train the POEM-GNN and the dense network together
using back-propagation. Training is performed on batched
training samples where each sample contains a ground-truth
label. We use the standard cross-entropy loss as the objective
function. This function is shown to be a good fit for sigmoid
and softmax activation functions (both are also standard func-
tions for classification) [22] used by POEM. It is defined as:

LG = −
N∑
i=1

yo,clog(p0, c) (3)

where N is the number of classes (i.e., running the code on
the CPU or GPU), y takes a binary value (0 or 1) that indicates
if label c is the correct classification for training sample o, and
p is the predicted probability for sample o to be of class c.



Table II
MACHINE LEARNING METHODS USED IN EVALUATION

Approach Code representa-
tion

Model Use cases

Grewe et al.[23] Manual features Decision Tree Case study 1
DeepTune [4] Source code token

sequence
LSTM Case studies 1-3

Inst2vec [14] LLVM IR tokens LSTM Case studies 1-2
GNN-AST [12] AST Vanilla GNN Case studies 1-3
GNN-CDFG [12] CDFG Vanilla GNN Case studies 1-3
Magni et al. [24] Manual features Neural Networks Case study 2
NeuroVectorizer
[9]

Token sequence LSTM +
Reinforcement
learning

Case study 3

uVuldeepecker
[8]

AST Bidirectional-
LSTM

Case study 4

Lin et al. [25] AST Bidirectional-
LSTM

Case study 4

POEM AST + CDFG multi-relational
GNN

Case studies 1-4

III. EXPERIMENTAL SETUP

To demonstrate the benefit of POEM, we use it to tune per-
formance optimization heuristics for OpenCL and C programs.
To evaluate the generalization ability of POEM in modeling
program structures, we also apply it to detect code vulnerabil-
ities for C, Java and Swift. In total, we apply POEM to four
case studies and compare it with nine prior machine-learning-
based approaches across eight distinct hardware platforms. We
use the same model structure for POEM across tasks. Table II
lists the machine learning models used in the evaluation.

A. Case Study 1: Heterogeneous Mapping

The problem. This task builds a predictive model to determine
if the CPU or the GPU gives faster performance for a given
OpenCL kernel.

Methodology. We use the dataset of [4], which provides
labeled CPU/GPU instances for 256 OpenCL kernels extracted
from seven benchmark suites. The data were collected on
two CPU-GPU platforms: one with an Intel Core i7-3820
CPU and and AMD Tahiti 7970 GPU, and the other has an
Intel Core i7-3820 CPU and an NVIDIA GTX 970 GPU. By
varying dynamic inputs, this dataset consists of 680 labeled
instances on each platform. The compilation of some kernels
ended with the presence of errors. We have manually fixed
those broken OpenCL kernels to use the entire dataset. We
apply 10-fold cross-validation train and test a model. This
means we train a model on six benchmark suite and test the
trained model on the remaining suite. We repeat this process
ten times (folds), with each of the seven suites used exactly
once as the testing data. Since the dataset in [4] is small,
it may not provide sufficient training samples for a deep
learning method. To evaluate on a larger training dataset, we
use CLSmith, an OpenCL program synthesizer [6], to generate
12,000 valid and compilable OpenCL kernels as additional
training data for deep-learning-based competing methods and
POEM. This second experiment was performed on our GPU
platform that uses a 3.2 GHz 6-core Xeon E5-2667 CPU and
an NVIDIA Titan XP GPU. We profiled all benchmarks from

the DeepTune dataset to obtain the ground-truth label on this
platform.

Competitive methods. We compare POEM with five machine-
learning models. These include Grewe et al. [23] that uses
hand-tuned features, and the sequence model of DeepTune [4]
that uses LSTM to extract code representations from source
code token sequence. We also compare to inst2vec [14], a
LSTM-based model that operates on a graph representation of
the LLVM IR. For graph models, we compare to the two GNN
variants presented in [12] offers GNN-CDFG and GNN-AST
which operate on the CDFG and AST respectively. Like all
prior work, for this case study, we use two dynamic values, the
workgroup size and data size that are available to the OpenCL
runtime, as the auxiliary inputs (or features) to all predictive
models. Results of this case study is presented at Section IV-A.

B. Case Study 2: Thread Coarsening

The problem. This task builds a model to determine how
many parallel threads should be merged together to achieve
faster execution time. This is a problem known as determining
the thread coarsening factor for OpenCL [24]. Here, we wish
to build a model to determine for each kernel, which of the
six coarsening factors, 1, 2, 4, 8, 16, and 32, should be used
for a given kernel (where a factor of 1 means no coarsening).

Methodology. We replicate the setup of [24], [4], [12] by
testing each approach using the labeled dataset given in [24].
This dataset contains 17 OpenCL kernels extracted from three
benchmark suites. The data were collected from four distinct
GPU platforms: AMD HD 5900, AMD Tahiti 7970, NVIDIA
GTX 480 and NVIDIA K20c. Like [4], we use leave-one-
out cross-validation for this task because the benchmark set is
small. This works by selecting one benchmark for testing and
using the remaining ones for training. This task is designed
to evaluate if our approach can effectively support transfer
learning [26], a technique for reusing the knowledge learned
from one task to speed up the learning for another task.

Competitive methods. We compare POEM against three ap-
proaches: Magni et al. [24] that uses hand-tuned features,
DeepTune, inst2vec, and GNN-CDFG and GNN-AST pre-
sented in [12]. To apply transfer learning, we first train an
initial deep learning model on the dataset given in [4]. We
then use transfer learning to fine-tune the trained model on
training data used for this task. Fine-tuning is done by simply
copying the learned parameters of case study one to initialize
the model and then training the model as normal using cross-
validation. Note that for this task, the OpenCL kernel is the
sole input and coarsening factor is the predicted output. Results
of this case study are presented in Section IV-B.

C. Case Study 3: Loop Vectorization

The problem. This task targets the classic compiler optimiza-
tion problem of loop vectorization. It aims to build a predictive
model to determine the optimal vectorization factor (VF) and
the interleaving factor (IF) for individual loops. The first



Table III
DATASET FOR VULNERABILITY DETECTION.

Source Language #samples #positive samples

C 156,668 78,334SARD & NVD Java 60,242 30,121

GitHub C 10,400 5,200
Swift 4,124 2,062

parameter determines how many instructions to pack together
from different loop iterations, while the latter decides the stride
of the memory accesses of the packed instructions. Prior work
has shown that the two parameters can have a substantial
impact on the resulting vectorization performance[27], [9]. We
consider 35 combinations of VF (1, 2, 4, 8, 16, 32, 64) and
IF (1, 2, 4, 8, 16), which are found to be useful in [9].

Methodology. We use LLVM version 9.0 as the compiler.
We configure the VF and IF on a per loop basis by
placing the LLVM/Clang vectorization directives, e.g., loop
vectorize_width(VF) interleave_count(IF).
We replicate the evaluation of NeuroVectorizer [9], by
using the 6,000 synthetic loops generated from the LLVM
vectorization test set to train a model and then test the trained
model on hand-written programs from MiBench [28] and
PolyBench [29]. Our evaluation platform uses an 3.6 GHz
Intel Core i7 CPU with 64GB RAM.

Competitive methods. We compare POEM against four super-
vised learning models: DeepTune, and the two GNN variants
in [12]. We also compare to NeuroVectorizer [9], a recently
proposed reinforcement-learning-based approach. NeuroVec-
torizer first learns the program representations through LSTM.
The representations are then used by a reinforcement learner to
search for the best configuration until a convergence threshold
is met. Due to the nature of reinforcement learning, NeuroVec-
torizer can incur significant search overhead. It takes minutes
to search for the vectorization configuration for a single loop
on our evaluation platform. By contrast, our approach takes
less than 100ms (including constructing the relation graphs) to
make a prediction. The results are presented in Section IV-C.

D. Case Study 4: Vulnerability Detection

The problem. In this task, we build a model to detect if a
given source code snippet contains one of the 2019 CWE top-
25 most dangerous software errors [30] at the function level.

Methodology. As summarized in Table III, we use a dataset of
231,434 samples with source languages in C, Java and Swift,
where half of the samples are vulnerable code. The vulnerable
code samples are collected from the standard vulnerable
code databases, including the national vulnerability database
(NVD), common vulnerabilities and exposures (CVE) and
open datasets collected from GitHub. The vulnerable-free
samples are obtained by applying the corresponding patch to
the vulnerable code. We apply 10-fold cross-validation to train
and test a predictive model (see also Section III-A).

Competitive methods. For this case study, we compare POEM
against two state-of-the-art deep-learning-based vulnerability
detection models: uVuldeepecker [8] and Lin et al. [25].
Results of this case study is presented in Section IV-D.

E. Performance Report

To measure execution time for case studies 1-3, we run each
test case repeatedly until the 95% confidence bound per model
per input is smaller than 5%. For case study 4, we report the
accuracy, and the false-positive and the false-negative rates.
A false positive is when the model predicts a code snippet
has a vulnerability while it does not, and a false-negative is
when the model fails to detect a vulnerable code sample. For
code vulnerability detection, we would like to achieve high
accuracy with low false-positive and false-negative rates.

We report the geometric mean across experimental runs
or test cases. The geometric mean is widely considered to
be more robust and meaningful than the arithmetic mean for
performance measurements [31]. Note that POEM would give
better performance improvement measured by the arithmetic
mean for all test cases.

F. Implementation and Training Settings

We implement POEM on Tensorflow v1.8. To build the AST,
we use Clang [32] for OpenCL, C and Swift, and ANTLR [33]
for Java. To extract the CDFG, we use LLVM [34] for
OpenCL, C and Swift, and Soot [35] for Java.

All deep learning models were trained in an end-to-end
fashion using minibatch stochastic gradient descent (SGD)
and the Adam optimizer [36]. For fair comparison, we use
NNI [19], an AutoML tool to determine the training hyper-
parameters, including the learning rate and batch size unless
these are given in the published implementation. We train the
models using two NVIDIA GTX 1080 GPUs. Note that we set
aside 1/10th of the training data to use for validation during
the training process. Training terminates when the loss does
not improve within 20 consecutive training epochs, or reaches
a 99% accuracy on the valuation set, or meets the termina-
tion criteria given in the published implementation. For each
model, we use the configuration that yields the best results
on the validation set. Because we use the geometric mean
instead of the arithmetic mean and as the deep learning models
are initialized with random weights, performance numbers can
deviate from the source publications.

IV. EXPERIMENTAL RESULTS

In this section, we first present results for the four case
studies described in Section III, showing that POEM outper-
forms all alternative methods in each task. We then provide a
detailed analysis of the working mechanism of POEM.

A. Case Study 1: Heterogeneous Mapping

Figure 4 reports the performance improvement. Results on
NVIDIA GTX 970 and AMD Tahiti 7970 was obtained on the
DeepTune dataset, while results on NVIDIA Titan XP were
obtained by first training the models on additional synthetic



N V I D I A  G T X  9 7 0 A M D  T a h i t i  7 9 7 0 N V I D I A  T i t a n  X P1 . 0
1 . 5
2 . 0
2 . 5
3 . 0

Sp
ee

du
p

 G r e w e  e t  a l .     I n s t 2 v e c           G N N - A S T  
 D e e p T u n e       G N N - C D F G      P O E M

Figure 4. Speedups (geometric mean) over a GPU-only baseline for hetero-
geneous mapping (case study 1). POEM outperforms alternative methods on
both platforms.

N V I D I A  G T X  9 7 0 A M D  T a h i t i  7 9 7 0 N V I D I A  T i t a n  X P5 0 %
6 0 %
7 0 %
8 0 %
9 0 %

Ac
cu

rac
y

 G r e w e  e t  a l .     I n s t 2 v e c           G N N - A S T  
 D e e p T u n e       G N N - C D F G      P O E M

Figure 5. Prediction accuracy for heterogeneous mapping (case study 1).
POEM gives the highest prediction accuracy.

OpenCL kernels and then testing the trained model on hand-
written kernels from the DeepTune dataset. The baseline is
a GPU-only strategy that always uses the GPU for kernel
execution. As we report the geometric mean, the speedup
number can deviate from the original publications.

For this case study, POEM outperforms all other approaches
on all platforms. On NVIDIA GTX 970, we observe small
performance improvement over the GPU-only baseline for
all methods. On this platform, POEM gives the best overall
speedup of 1.32, albeit its improvement is relatively small. By
contrast, the benefit of using the right device on the AMD
Tahiti 7970 GPU is larger. On this platform, POEM achieves
a mean speedup of 1.8x, which translates to an improvement
of 13% over the second-best model, GNN-CDFG. All deep-
learning models benefit from additional training data on the
NVIDIA Titan XP platform, where POEM delivers the highest
mean speedup of 2.6x.

If we now look at the prediction accuracy given in Figure
5, we see that POEM also delivers the highest accuracy on all
platforms; albeit POEM gives modest accuracy improvement
on the DeepTune dataset because the number of training
samples is small. However, when using a larger training
dataset, it is able to boost the prediction accuracy from 82% to
89% over DeepTune and Inst2vec. We note that on the AMD
platform, for most of the cases that POEM mispredicts, the
difference in performance between the GPU and the CPU is
small. As a result, such a misprediction has little impact on
the overall performance. Overall, POEM delivers the highest
mean speedup and prediction accuracy across all evaluation
platforms and datasets.
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Figure 6. Performance of thread coarsening (case study 2). POEM is the only
method that gives an overall speedup.
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Figure 7. Speedup over the LLVM default loop vectorizer (case study 3).
POEM delivers the highest overall speedup and is the best-performing model
for most of the testing loops.

B. Case Study 2: Thread Coarsening

Figure 6 shows the speedup for thread coarsening over a
baseline that uses a coarsen factor of 1 (i.e., no coarsening).
In this task, we apply transfer learning to port the deep learning
model trained for case study 1 (using the DeepTune dataset)
to predicting thread coarsening . POEM is the only model that
consistently delivers performance improvement across GPU
platforms, albeit the improvement is modest. The modest
improvement is expected as a theoretically perfect predictor
would only achieve a mean speedup of 1.28x. The GNN vari-
ants deliver poor performance for this task, leading to overall
slowdown on three out of four evaluation platforms. DeepTune
gives marginal improvements on two GPU platforms, but its
performance is far from POEM on these platforms. Notably, on
Tesla K20c, POEM and inst2vec are the only predictive models
that give a speedup. On HD5900, POEM gives an overall
speedup of 1.26x, improving the second-best predictive model,
DeepTune, by 20%. Overall, POEM achieves consistently
higher speedups when compared to that of other methods.
This experiment shows POEM can effectively support transfer
learning when the training corpus is small.

C. Case Study 3: Loop Vectorization

Figure 7 shows the speedup for predicting loop vectorization
configurations. The baseline is the LLVM default loop vec-
torization setting. GNN and DeepTune match or outperform
NeuroVectorizer on several high-speedup test cases (L8, L9,
L10), despite that NeuroVectorizer incur significantly more ex-
pensive compile-time overhead. However, GNN and DeepTune
give no performance improvement or even slow down over
LLVM “-O3” for several loops, including L3, L7, and L11.



Table IV
PERFORMANCE FOR CODE VULNERABILITY DETECTION (CASE STUDY 4).

Metrics uVuldeepecker Lin et al. POEM

Accuracy 80.0% 88.0% 90.9%
FPR 31.6% 30.5% 3.1%C
FNR 9.4% 7.1% 8.9%

Java
Accuracy 78.3% 72.0% 84.4%
FPR 27.7% 45.4% 20.7%
FNR 15.7% 10.3% 8.1%
Accuracy 77.7% 74% 89.0%
FPR 21.0% 23.2% 19.3%Swift
FNR 23.6% 28.3% 9.9%

After having a close examination of these cases, we found
that these loops contain a branch with the loop body that does
not captured by DeepTune and the simply graph representation
used by GNN. POEM gives or matches the best performance
for all test cases, except for L11. For L11, the performance
of POEM is not far from the best-performing model (i.e.,
NeuroVectorizer). Overall, POEM gives an average speedup of
2.08, which translates to 12% over the second best-performing
model, NeuroVectorizer. Compared to NeuroVectorizer, POEM
also has orders of magnitude less compile-time overhead (un-
der a second versus 15 minutes compile time for the 12 testing
loops). This indicates that the representation learned by POEM
can effectively support the downstream loop vectorization task.
An interesting question is if the embeddings learned by POEM
can be used to improve the reinforcement search framework
of NeuroVectorizer. We leave this as our future work.

D. Case Study 4: Code Vulnerability Detection

In this experiment, we apply POEM to detect vulnerabilities
of function-level source code written in C, Java and Swift.

Table IV reports the higher-is-better accuracy metric and the
two lower-is-better metrics: the false-positive rate (FPR) and
the false-negative rate (FNR). POEM delivers the best accuracy
with the lowest FPR and FNR. On the C dataset, POEM has
an accuracy of over 90.9%, with a low FPR of 3.1%. POEM
has a modestly higher FNR compared to Lin et al., but it
has a significantly lower FPR (3.1% vs 30.5%). A low PPR
is important as it reduces the developer’s time in investigat-
ing false alarms. For the Java and Swift datasets, all three
approaches have relatively lower accuracy and higher FPR.
This is largely due to the more complex language features
like overriding of an external method. Such information is not
captured by the initial vertex embedding method (word2vec
used by the three methods). Nonetheless, POEM outperforms
the other two methods across language datasets by successfully
detecting more vulnerable code samples with the lowest FPR.

To illustrate the benefit of flow-sensitive representations,
consider the vulnerable-free code sample given in Figure 8.
Both uVuldeepecker and Lin et al. incorrectly classify this
code snippet for containing a double-free vulnerability. The
root cause for this false positive is that their sequence-based
detection models have to linearize and treat the code structure
as a sequential sequence of tokens, which, unfortunately, does

1 attr_value = (char*)malloc(attr_len + 1);
2 ...
3 else if(!strcmp(attr_name, "dateadded"))
4 {
5 ae->date_added = atoi(attr_value);
6 free(attr_value);
7 }
8 else
9 free(attr_value);

Figure 8. Benign code sample from Github. LSTM-based models misclassify
the code contains a “double-free” vulnerability for buffer attr_value.
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Figure 9. Performance of POEM heterogeneous mapping on AMD Tahiti
7970 as the number of embedding layers changes.

not capture the divergence of the execution path. Consequently,
they regard dynamic buffer attr_value (line 9) to be
deallocated again after it being freed at line 6. By contrast,
POEM can precisely capture the control and data flow of the
target program by modeling the control and data flows. As a
result, POEM correctly infers that buffer attr_value at line
9 is freed in a different execution path and hence will not lead
to a double-free vulnerability.

E. Model Analysis

1) Impact of embedding layers: Using heterogeneous map-
ping as an example, Figure 9 shows how the performance of
POEM changes on the DeepTune dataset on AMD Tahiti 7970.
Increasing the number of embedding layers (and hence the
number of neighborhood aggregation iterations - see Section
II-F) can improve the performance. However, the accuracy
reaches a plateau when using five embedding layers and using
more than that leads to overfitting and a drop of prediction
accuracy on the validation set. The validation dataset is part
of the training data but not the test dataset which is always not
seen at the model design and training stage. We use the same
procedure to determine the optimal number of embedding
layers for each task, by comparing the resulting accuracy on
the validation set. We found that using 3 to 5 embedding
layers give a good performance for our tasks and using more
embedding layers would require a larger training dataset.

2) Impact of implementation choices: In this experiment,
we compare POEM to several variant implementations for
performing heterogeneous mapping on AMD Tahiti 7970.
The first is RGCN [21] that applies to the 10 code relations
described in Table II-C. Unlike POEM, RGCN takes in a single
adjacency matrix that encodes all the node connectivities of
the AST and CDFG, and the edge is encoded using a one-hot
vector for representing different relations. The second variant,
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Figure 10. Comparing implementation variants of POEM on AMD Tahiti
7970 for heterogeneous mapping. Our implementation choices of POEM give
the best overall performance.

referred to as p-vanilla-AST, operates on a standard AST
(without the additional edges described in Sec. II-B). The third
variant, referred to as P-AST, operates only on the augmented
AST. The fourth variant, referred to as P-CDFG, operates only
on the CDFG. This experiment uses heterogeneous mapping as
a case study and is designed to evaluate the impact of exacting
code information. The final variant, referred to as P-CONCAT,
learns individual embeddings for each relation graph and then
concatenates the individual embeddings for prediction. This
evaluation is also known as the ablation study by the machine
learning community [37].

The results are given in Figure 10. While RGCN support
modelling of multiple edge relations, it is less effective for
modeling a combined graph from the AST and the CDFG.
Its low performance is largely due to two reasons. Firstly, a
simple combination of the AST and the CDFG, which are
two heterogeneous graphs, to fit the RGCN can confuse the
learning algorithm. Second, RGCN requires a large number
of learnable parameters and is hard to generalize. Figure 10
also shows that using the standard AST is inadequate for
capturing the essential program structures. By augmenting the
AST with additional control and data flow information, P-AST
improves P-vanilla-AST by 4%. However, using the AST or
CDFG alone is insufficient, as both give an accuracy of less
than 75%. P-CDFG correctly predicts 20 kernels where P-
AST fails, while it fails on other 12 kernels where P-AST
succeeds. P-CONCAT also gives lower performance compared
to POEM, suggesting that simply combining the embeddings
of relation graphs is less effective. This experiment suggests
that we need to utilize and aggregate the information of the
AST and the CDFG during the learning process. POEM offers
exactly such capabilities, leading the best overall performance.
It also shows that our multi-relational graph learning method
improves a single concatenation strategy.

3) Embedding visualization: In an attempt to examine
the learned code representation qualitatively, we provide a
visualization of the t-SNE-transformed feature representations
[38] extracted by the POEM-GNN pre-trained on the DeepTune
heterogeneous mapping dataset. The representation exhibits
discernible clustering in the projected 2D space. Note that
these clusters (with two different node colors) correspond to

CPU GPU

(a) POEM-GNN

CPU GPU

(b) GNN-AST

CPU GPU

(c) GNN-CDFG

CPU GPU

(d) DeepTune

Figure 11. Visualization of the learned program representations for heteroge-
neous device mappings. We map the high-dimensional embedding space to a
2-dimensional space to aid clarity using t-SNE. The embeddings learned by
POEM is more discriminative than the ones given by other methods, leading
to a clearer boundary between the two classes.

the two labels (CPU and GPU) of the dataset, verifying the
model’s discriminative power across different classes for this
dataset. As can be seen from the diagram, the embeddings
learned by POEM is more discriminative than the ones given
by other methods, leading to a clearer linear boundary between
the two classes (CPU and GPU).

4) Training overhead: The time for training POEM is
dominated by training data collection. For example, for case
study 1, it took less than 24 hours to profile over synthetic
10,000 benchmarks for labeling the data. The time in model
training and hyper-parameter tuning is less than 12 hours using
two modest NVIDIA 1080 GPUs on 10,000 samples. Since
training is only performed once, it is a one-off cost.

V. DISCUSSIONS

Naturally, there is room for future work and further im-
provement. We discuss a few points here.

Model interpretability. Machine learning techniques, in gen-
eral, have the problem of relying on black boxes. This problem
is just as true for POEM. A possible approach to gain insight
into why the model fails to produce the desired result is to
train an interpretable model (or so called surrogate models)
like linear regressor to approximate the predictions of the
underlying black-box model [39].

Training samples. Deep neural networks typically require
a large volume of training data to learn over. However,
there is often a shortage of benchmarks. Therefore, work on
benchmark synthesis [3] is orthogonal to our approach.

Training overhead. Profiling training benchmarks to generate
training data could be expensive. One way of reducing the
training overhead is to use active learning [40] to only profile
and label training benchmarks that are likely to improve the
performance of the machine-learned model.

Memory footprint. Like all GNN approaches, the memory
footprint of POEM increases as the graph size increases.
However, we can reduce memory pressure by using sampling
methods like GraphSAGE for batched training [41], i.e.,
operating on a subgraph of the entire program at a time.



Other application domains. We have shown that POEM can
be generalized across a range of tasks. We envision that POEM
can be applied to other applications which are beyond the
scope of this work. It can be applied to detect malicious
code by looking for suspicious and obfuscated patterns. It
can be extended to regression-based problems like predicting
the potential speedup for a code transformation option. A
particularly interesting research direction would be to extend
POEM to model the program structure at the binary level [42]
for tasks like program verification and security.

VI. RELATED WORK

Machine learning has demonstrated promises in automating
the process of decision model construction for various code
optimization tasks [1]. Many prior studies have shown that
machine-learned models can outperform expert-crafted heuris-
tics [43], [44], [45], [46], [47], [48], [49], [50]. However, a
significant barrier still exists – programs must be represented
as a set of features that serve as inputs to a machine learning
tool. Traditionally, this requires experts’ involvement to extract
the crucial elements of the program. In some ways, we have
pushed the problem from one of hand-crafting the heuristic to
one of hand-crafting the right code representations.

Prior work tried to automate this process of finding repre-
sentations for programs by searching useful information from
the compiler IR [51], [52]. These approaches still require
experts to manually define the search space of a particular
compiler IR implementation. As such, they offer little help in
removing human experts from the loop.

In recent year, deep learning has been employed for model-
ing program structures. One of the key advantages of deep
learning is that it can automatically find the right feature
representations from training data without human involvement
[10]. Prior work for deep learning on code typically employ
recurrent neural networks (RNN) like LSTM or GRU to extract
program representations from token sequences. For examples,
DeepTune uses LSTM to extract program representations from
tokenrized OpenCL code [4] and Inst2vec applies LSTM
to sequentialized IR graphs [14]. Other work uses RNNs
to summarize representations from the AST [53], [54], [9]
or sparse matrices [5]. While RNNs is a proven technique
for natural language processing, it is mainly designed for
processing a sequential sequence [11]. The challenge for
treating code structures as a sequential token sequence is
that statements can easily be separated by hundreds of lines
of irrelevant code in sequential representations. As a result,
a sequence model is unlikely to capture such long-distance
dependence. As a result, RNNs are ineffective in modeling
the complex program control and data flows - which should
be better represented as a graph structure instead of a sequence
of tokens. A graph representation not only enables the learning
framework to leverage the well-defined program structures but
also facilitates propagating information across the graph in a
manner similar to typical compiler analyses.

An early attempt to use program graph structures for code
optimization is presented in [55]. This approach requires

careful hand-tuned features at the basic block level to ex-
tract information from the program graph. To predict an
optimization option, it measures the similarity of the input
program graph with the graphs of the training datasets. This
strategy requires the training data graphs to be shipped with
the compiler and hence does not scale well as the training
program size increases. Furthermore, this approach does not
abstract the language semantics and syntax a sufficiently high
level, leading to expensive computation complexity for graph
matching. Our approach eliminates the need for manual feature
tuning, with a constant, lower-cost compile overhead, which
is independent of the size of the training set.

Some of the most recent work has employed the recently
proposed GNN to model code structures. For example, Mil-
tiadis et al. [15] use GNN to model the AST to identify the
misuse of names. The recent work presented in [12], which
uses the GNN to model the AST or CFDG for OpenCL
program optimization, is most closely related. Our work was
conducted independently and perhaps concurrently with [12].
The approach presented in [12] uses a vanilla GNN which treat
all relationships equally as a single graph edge type, whether
it is a node connection, or a data or control flow. This strategy
misses much of the information that could otherwise be cap-
tured. Our approach advances [12] by capturing the different
relationships within a unified learning framework. Compared
to [12], POEM can leverage a richer set of information by
combining the AST and CFDG, leading to significantly better
and more reliable performance.

In recent years, GNNs have been proposed to model and
process graph structures [56], [57]. The GNN family includes
a diverse class of neural network architectures based on
recurrent units [58], [59] and convolutional [60] and attention
[61] methods. POEM represents the first work for leveraging
GNNs to learn over multiple program relationships.

VII. CONCLUSION

This paper has presented POEM, a general learning frame-
work for supporting building machine-learned heuristics for
code analysis and optimization. POEM is designed to automat-
ically extract useful representations of programs to be used as
inputs for machine learning tools. At the core of POEM is a
novel Graph Neural Network (GNN) that can distinguish and
aggregate information from different relationships within the
program control and data flow graph and the abstract syntax
tree. By providing a way to abstract and aggregate information
from a well-structured program graph representation, our
approach can capture a richer set of syntactic and semantic
information than prior deep-learning-based approaches.

We demonstrate the generalization ability of POEM by
applying it to four representative program optimization and
analysis tasks spanning different programming languages. We
perform extensive experiments to compare POEM with state-
of-the-art approaches for each task. Experimental results show
that POEM consistently outperforms prior methods, setting new
state-of-the-art results for these tasks.
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