
J. Fang et al. Performance Evaluation of Memory-Centric ARMv8 Many-Core Architectures: A Case Study with Phytium

2000+. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 33(1): 1–13 January 2018. DOI 10.1007/s11390-

015-0000-0

Performance Evaluation of Memory-Centric ARMv8 Many-Core
Architectures: A Case Study with Phytium 2000+

Jian-Bin Fang1, Xiang-Ke Liao1, Chun Huang1, and De-Zun Dong1,∗

1College of Computer Science, National University of Defense Technology, Changsha 410073, China

E-mail: {j.fang, xkliao, chunhuang, dong}@nudt.edu.cn

Received July 15, 2018 [Month Day, Year]; revised October 14, 2018 [Month Day, Year].

Abstract This article presents a comprehensive performance evaluation of Phytium 2000+, an ARMv8-based 64-core

architecture. We focus on the cache and memory subsystems, analyzing the characteristics that impact the high-performance

computing applications. We provide insights into the memory-relevant performance behaviours of the Phytium 2000+ system

through micro-benchmarking. With the help of the well-known roofline model, we analyze the Phytium 2000+ system, taking

both memory accesses and computations into account. Based on the knowledge gained from these micro-benchmarks, we

evaluate two applications and use them to assess the capabilities of the Phytium 2000+ system. The results show that the

ARMv8-based many-core system is capable of delivering high performance for a wide range of scientific kernels.

Keywords many-core architectures, memory-centric design, performance evaluation

1 Introduction

The high-performance computing (HPC) hardware

is firmly moving towards the many-core design, and the

ARMv8-based processors are emerging as an interest-

ing alternative building block for HPC systems [1–3].

This can be seen from the fact that the 64-core

Phytium 2000+ architecture has been used to build

the prototype of China’s new-generation exascale su-

percomputer [4], as well as the fact that the Fugaku

supercomputer has been built upon a 48-core A64FX

architecture [5]. Thus, it is important to understand

such novel microarchitecture designs and their perfor-

mance impacts on typical HPC applications. Having

such knowledge is useful not only for better utilizing the

computation resources, but also for justifying a further

increase in the processor core provision and driving the

innovations in memory system design.

In this article, we present a comprehensive perfor-

mance evaluation of the Phytium 2000+ many-core ar-

chitecture for HPC applications. We focus on the char-

acteristics of Phytium 2000+ that have a direct per-

formance impact on these applications – high memory

capacity and bandwidth, the unique cache organization,

the mesh-based on-chip interconnect, and a large num-

ber of available hardware cores.

We first describe and highlight the new design

features of the Phytium 2000+ processor (Section 2).

Most notably, Phytium 2000+ integrates 64 ARMv8-

based hardware cores and uses 128 GB of memory,

which can deliver 563.2 GFLOP/s of double-precision

performance and 153.6 GB/s of memory throughput

Regular Paper

This work was supported by the National Key Research and Development Program of China under Grant No. 2018YFB0204301,
and the National Natural Science Foundation of China under Grant Nos. 61972408 and 61602501.

∗Corresponding Author

©Institute of Computing Technology, Chinese Academy of Sciences & Springer Nature Singapore Pte Ltd. 2020

2 J. Comput. Sci. & Technol., January 2018, Vol., No.

when running at 2.2 GHz. This results in a good

machine balance between calculations and memory ac-

cesses. Besides, Phytium 2000+ leverages a hierarchical

heterogeneous on-chip network and cache organization

distributed among 8 panels, which helps to achieve a

good data locality and scalability [3].

We then use a set of microbenchmarks to char-

acterize the low-level memory-relevant features of the

Phytium 2000+ architecture (Section 3). We focus on

the memory and cache subsystem in particular, includ-

ing the core-to-core communication performance and

the aggregated memory bandwidth with all hardware

cores. We observe that a hierarchy of data locality has

to be dealt with so as to achieve high performance.

Special care has to be taken as to whether the data

is located in the local cache, in the same core group,

in the same panel, or across panels. Our results show

that the measured write bandwidth can reach over

80% of the theoretical peak DRAM bandwidth, which

is surprisingly larger than the read bandwidth. This

is achieved by using all available hardware cores, and

pinning each thread to a distinct hardware core. We

also demonstrate that the non-contiguous memory ac-

cess is detrimental to the bandwidth efficiency, with

Phytium 2000+ showing more restrictions on the stanza

length of data prefetching than the conventional x86

processors.

In addition to our low-level evaluation on the mem-

ory subsystem, we analyze a Phytium 2000+ many-

core architecture with the well-known roofline model

(Section 4). Thanks to its balance between calcula-

tions and memory accesses, the Phytium 2000+ sys-

tem can deliver promising performance for typical

high-performance computing kernels, including sparse

matrix-vector multiplication (SpMV), 3D stencil, and

general matrix-matrix multiplication (GEMM).

We finally evaluate the Phytium 2000+ system us-

ing two typical high-performance computing kernels

(Section 5). They are SpMV and GEMM, which

are two essential linear algebra kernels and widely

used in high-performance computing applications. We

show that for both applications, the Phytium 2000+

system achieves excellent performance, comparable to

the start-of-the-art results. Our work demonstrates

that the Phytium 2000+ system can be used to effi-

ciently handle much larger datasets, compared with the

accelerator-centric design.

Fig.1. A high-level view of the Phytium 2000+ architecture. The
64 processor cores are groups into eight panels (a), where each
panel contains eight ARMv8 based Xiaomi cores (b).

2 Overview of the Phytium 2000+ Architecture

Fig.1 gives a high-level view of the Phytium 2000+

processor. It uses the Mars II architecture 1, and fea-

tures 64 high-performance ARMv8 compatible xiaomi

cores running at 2.2 GHz. The entire chip offers a peak

performance of 563.2 Gflops for double-precision opera-

tions, with a maximum power consumption of 96 Watts.

The 64 hardware cores are organized into 8 panels,

where each panel connects a memory control unit.

The panel architecture of Phytium 2000+ is shown

in Fig.1(b). Each panel has eight xiaomi cores, and

each core has a private L1 cache of 32KB for data and

instructions, respectively. Every four cores form a core

group and share a 2MB L2 cache. The L2 cache of

Phytium 2000+ uses a inclusive policy, i.e., the cache-

lines stored in L1 are also present in the L2 cache.

1Phytium Mars II Microarchitectures, https://en.wikichip.org/wiki/phytium/microarchitectures/mars_ii

J. Fang et al.: Performance Evaluation of Memory-Centric ARMv8 Many-Cores 3

Each panel contains two Directory Control Units

(DCU) and one routing cell. The DCUs on each panel

act as dictionary nodes of the entire on-chip network.

Mars II uses a hierarchical on-chip network, with a

local interconnect on each panel and a global connect

for the entire chip. The former couples cores and L2

cache slices as a local cluster, and the latter is imple-

mented with a configurable cell-network to connect pan-

els. Phytium 2000+ uses a home-grown Hawk cache co-

herency protocol to implement a distributed directory-

based global cache coherency across panels. The con-

nected DDR memory modules are working at 2400MHz,

giving a theoretical bandwidth of 153.6GB/s.

We run a customized Linux OS based on version

4.4 on the Phytium 2000+ system. We use gcc v8.2.0

compiler and the OpenMP/POSIX threading model.

3 MicroBenchmark Results

This section presents the core-to-core communica-

tion performance numbers, and the aggregated memory

bandwidth for the Phytium 2000+ memory subsystem.

3.1 Core-to-Core Latency Results

3.1.1 Latency Overview

The accessing latency is referred to as the time of

moving a cacheline within the local core or between

two distinct cores. We use Molka’s approach to mea-

sure the core-to-core latency numbers [6]. During the

measurement, we use multiple threads to move data be-

tween cores. To ensure that the buffer allocated by a

thread belongs to a fixed core, we pin each thread to

a fixed core, i.e., thread n always runs on core n (Cn).

Fig.2 shows the latency results when C0 loads data from

its local cache, from C1 sharing a L2 cache slide with

C0, from C4 on the same panel, and from C8 on a dif-

ferent panel. Note that, the performance numbers are

measured when the cachelines are modified initially.

0

50

100

150

200

250

300

350

16k 32k 2M

L
a
te

n
c
y
 [
c
y
c
le

s
]

Data set size [Byte]

C0
C1
C4
C8

Fig.2. Read latency of C0 accessing the local (C0) cache or the
cache of another core (C1, C4 or C8).

We see that, accessing the local L1 and L2 cache

takes 3 cycles (1.4 ns) and 21 cycles (9.5 ns), respec-

tively. The specification of the first generation Mars

describes that accessing the local L1 and L2 takes 2

ns and 8 ns, respectively, which is in accordance with

our measured numbers [3]. When C0 loads data from

C1, the latency is the same as that accessing the local

L2 cache. Fig.2 shows that, no matter which memory

layer the data is suited in, loading cachelines across core

groups or panels takes many more cycles than access-

ing the local cache slices. Thus, loading data within the

local cache slice is the fastest.

3.1.2 Across-Panel Latency Results

We evaluate the performance impact of panel dis-

tance on latency when accessing cores fixed to different

panels. Fig.3 shows the latency results when C0 access-

ing the cores on P1 (Panle 1)–P7 (Panel 7), respectively.

We see that the latency numbers vary over the panel

distance, with a latency variance of up to 105 cycles.

Besides, the latency numbers of C0 on P0 accessing C8

on P1 and C32 on P4 are the same. This is because P1

and P4 are at the same distance to P0. This result also

agrees with our measured NUMA-aware stream band-

width (Fig.6) and the theoretical latency results [3].

4 J. Comput. Sci. & Technol., January 2018, Vol., No.

0

50

100

150

200

250

300

350

400

16k 32k 2M

L
a
te

n
c
y
 [
c
y
c
le

s
]

Data set size [Byte]

C8(P1)
C16(P2)
C24(P3)
C32(P4)
C40(P5)
C48(P6)
C56(P7)

Fig.3. Read latency of C0 accessing the cache on the cores of
different panels (P1–P7).

3.2 Core-to-Core Bandwidth

This subsection presents the read bandwidth on the

Phytium 2000+ architecture. We measure the core-to-

core sustainable bandwidth by continuously accessing a

chunk of data elements [6]. Fig.4 shows the bandwidth

of C0 loading cachelines which are modified, or shared

in different cores and different cache levels. Note that,

the exclusive and modified states are the same for

the directory-based caching architectures. We measure

the bandwidth of C0 loading data from its local cache,

from C1 sharing a L2 cache with C0, from C4 on the

same panel, and from C8 on a different panel.

In Fig.4, we find that the read bandwidth results

show a clear phase change as the size of the dataset

increases. Moreover, the size of the dataset when the

staged change occurs is basically consistent with the

size of various levels of cache. Compared with the first

change point occurring exactly at 32KB (the size of L1

cache), the second change occurs earlier than 2M (the

size of L2 cache). This is because the L1 cache is a

pure data cache, while the L2 cache is a hybrid cache

for both data and instructions.

3.2.1 Local Cache Accesses

Whatever the state of the cachelines, the data can

be loaded from C0’s local caches. The obtained band-

width has nothing to do with the coherency state of the

accessed data. The read bandwidth to its local L1 cache

can reach 33.6 GB/s, while reading data from the local

L2 cache can reach a bandwidth of 18.5 GB/s. Given

that the L1 read port of Phytium 2000+ is 128 bits in

width and runs at 2.2 GHz, we calculate the theoreti-

cal L1 read bandwidth as 2.2 × 128 ÷ 8 = 35.2 GB/s.

We see that the measured bandwidth is quite close to

its theoretical counterpart (33.6 GB/s vs. 35.2 GB/s).

The measured write bandwidth stays about 17.4 GB/s

for L1. We note that the write bandwidth is around

a half of the read bandwidth. This is because storing

data into L1 occurs at 64 bits per cycle, while loading

data from L1 occurs at 128 bits per cycle.

3.2.2 Within a Core Group

Differing from Intel’s MESIF cache coherence proto-

col, Phytium 2000+ uses a home-grown Hawk cache co-

herence protocol to implement a distributed directory-

based global cache coherency across panels. Note that

the directory-based protocol cannot distinguish a data

block cached in an exclusive or modified state.

Given that C1 and C0 shares the same L2 cache slice,

data can be loaded from the local L2 cache when the

cacheline is shared. And the memory bandwidth of

accessing the local L2 can reach 18.5 GB/s. But the

bandwidth is reduced to be around 13.3 GB/s when

C0 loading exclusive or modified cachelines suited in

C1’s L1 cache. This is a notable difference from the

x86 processor that the exclusive and modified states

are treated the same on Phytium 2000+ .

3.2.3 Within a Panel

When C0 loads the data from C4 of the same panel,

where the two cores share no common cache slices, the

J. Fang et al.: Performance Evaluation of Memory-Centric ARMv8 Many-Cores 5

0

5

10

15

20

25

30

35

16k 32k 2M

b
a
n
d
w

id
th

 [
G

B
/s

]

Data set size [Byte]

C0
C1
C4
C8

(a) Modified

0

5

10

15

20

25

30

35

16k 32k 2M

b
a
n
d
w

id
th

 [
G

B
/s

]

Data set size [Byte]

C0
C1
C4
C8

(b) Shared

Fig.4. Read bandwidth of C0 accessing the local or another core (C1, C4 or C8).

bandwidth will be limited by the cross-group links. As

can be seen from Fig.4, the bandwidth is significantly

smaller (by around 40%) than the case when sharing

the same L2 cache slice.

Similar to C1, when performing cross-group access

to C4 for exclusive or modified cachelines, the band-

width for reading the remote L1 cache is always smaller

than that for accessing the remote L2. This is also be-

cause the data can be obtained directly from the L2

cache only when its state is shared initially.

3.2.4 Across Panel Accesses

C8 does not share a common L2 cache slice with

C0, and the two cores have to be communicated via the

cross-panel routing cells. The read bandwidth of C0 ac-

cessing C8 ranges from 9.2 GB/s to 9.7 GB/s, which is

smaller than the bandwidth of accessing C1 or C4 within

the same panel with C0.

3.2.5 NUMA Memory Accesses

Since C0, C1, C4 are within the same panel, they

are connected directly to the same MCU and memory

module. When accessing the data in the local memory

module for C1 and C4, the bandwidth can reach around

6 GB/s. On the other hand, C8 is connected directly to

another memory module. The bandwidth of C0 loading

data from C8’s memory module is around 5.1 GB/s.

To summarize, there is another difference between

the Phytium 2000+ processor and the x86 processor

when accessing the shared cachelines. The x86 pro-

cessor uses an extension of the MESIF protocol, which

requires the data to be fetched from the core with the

latest copy (forward). Meanwhile, the Phytium 2000+

processor uses a MOSEI-like coherency protocol. There

is no need to find the forward copy, but it can directly

obtain the data with an arbitrary shared copy.

3.3 Overall Bandwidth

3.3.1 Aggregated Stream Bandwidth

We use the stream v5.9 benchmark suite (copy,

scale, add, triad) to measure the aggregated memory

bandwidth [7], where the array size is 200,000,000 (i.e.,

4577.6 MB memory required) and each test is run 20

times. Also, we use separate benchmarks to measure

the memory bandwidth for pure read and write oper-

ations. The read benchmark reads the data from an

array A (b = b+A[k]). The write benchmark writes a

constant value into an array A (A[k] = C). Note that A

needs to be large enough (e.g., 1 GB) such that it can-

not fit in the on-chip memory. To avoid the impact of

“cold” TLBs, we start with two “warm-up” iterations

6 J. Comput. Sci. & Technol., January 2018, Vol., No.

of the benchmarks, before we measure a third one. We

use different numbers of running threads - from 1 to 64.

Note that each thread is pinned to a hardware core in

a sequential order with GOMP CPU AFFINITY.

The aggregated memory bandwidth of read, write,

copy, scale, add and triad is shown in Fig.5, when us-

ing different numbers of cores. We see that the overall

memory bandwidth increases over the number of used

cores. It happens because when using more threads, we

can generate more requests to memory controllers, thus

making the memory channels busier. Thus, if aiming

to achieve high memory bandwidth, programmers need

to launch enough threads to saturate the interconnect

and the memory channels. We also see that the maxi-

mum bandwidth for the six benchmarks is far below the

theoretical peak of 153.6 GB/s. Specifically, the read

bandwidth peaks at 100.42 GB/s and the write band-

width peaks at 123.43 GB/s, achieved with 64 threads

by pinning each thread to a fixed core.

(a)0

50

100

GB
/s

read

(b)0

50

100

GB
/s

write

(c)0

50

100

GB
/s

copy

(d)0

50

100

GB
/s

scale

(e)0

50

100

GB
/s

add

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
(f)

0

50

100

GB
/s

triad

Fig.5. Memory bandwidth with the stream benchmark.

Fig.5 shows that, the achieved memory bandwidth

increases very slightly, when using 1, 4, or 8 cores. This

is because using less than 8 cores will load the data

from the same memory channel and module. In such

a case, the maximum triad bandwidth stays around

12.57 GB/s, which is 65.47% of the theoretical peak

bandwidth. When using 64 cores, the achieved memory

bandwidth reaches their maximum, with a bandwidth

of 86.13 GB/s for copy, 87.27 GB/s for scale, 93.00

GB/s for add, and 93.57 GB/s for triad.

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

14.46 12.16 12.22 12.37 12.26 11.99 11.12 11.14

12.97 14.42 11.88 13.28 11.35 12.61 11.47 11.41

11.55 11.60 13.70 12.83 10.57 10.85 12.52 11.88

12.09 11.96 12.63 14.00 11.18 12.55 11.30 12.57

12.73 11.35 11.44 11.18 13.84 12.44 11.93 11.78

10.77 11.53 11.49 11.50 13.06 13.55 12.78 12.61

10.16 11.27 12.45 11.54 11.13 12.04 13.87 12.78

11.50 12.09 12.10 11.91 13.14 12.53 12.77 13.88

Fig.6. The NUMA-aware memory bandwidth with the stream

benchmark (The ID of x-axis and y-axis denotes the ID of
NUMA nodes, and the numbers on the heatmap represent the
achieved memory bandwidth in GB/s).

3.3.2 NUMA-Aware Stream Bandwidth

We measure the NUMA-aware stream bandwidth

on the Phytium 2000+ processor with the libnuma li-

brary. This is achieved by running a Pthread ver-

sion of the stream v5.9 benchmark [7] and pinning 64

threads to eight NUMA nodes. Fig.6 shows the triad

bandwidth of all pairs of NUMA nodes. We see that

the bandwidth results obtained on the local NUMA

node are the largest. The maximum bandwidth within

the same nodes is 14.46 GB/s. With the help of the

libnuma library, the aggregated triad memory band-

width reaches around 103.96 GB/s (with 64 threads),

which is around 10% larger than the measured number

in subsection 3.3.1. On the other hand, the across-

node bandwidth numbers are noticeably much smaller.

J. Fang et al.: Performance Evaluation of Memory-Centric ARMv8 Many-Cores 7

The cross-border accessing bandwidth can be reduced

to only 10.16 GB/s on the Phytium 2000+ processor.

3.3.3 Prefetching Effect

To evaluate the prefetching efficiency of Phytium

2000+, we use the Stanza Triad (STriad) [8] bench-

mark with a single thread. STriad works by perform-

ing a DAXPY (Triad) inner loop for a length L stanza,

then jumps over k elements, and continues with the

next L elements, until reaching the end of the array.

We set the total array size to 1 GB, and set k (the

jump length) to 2048 which is large enough to ensure

no prefetch between stanzas, but small enough to avoid

penalties from TLB misses and DDR precharge [8]. For

each stanza, we run the experiment 10 times, with the

L2 cache flushed each time, and calculate median value

of the 10 runs to get the memory bandwidth for each

stanza length.

Fig.7 shows the results of the STriad experiments

on both Phytium 2000+ and a regular Xeon processor

(Intel Xeon Gold 6130). We see an increase in mem-

ory bandwidth over stanza length L, and it eventually

approaches a peak of 8.4 GB/s on Phytium 2000+ and

12.8 GB/s on Xeon. We conclude that the prefetch-

ing mechanism on both system does offer a signifi-

cant benefit. Further, we see the transition point from

the bandwidth-increasing state to the bandwidth-stable

state appears at the same point when L = 210, but

the Xeon processor can reach a much larger bandwidth.

Therefore, we conclude that the non-contiguous access

to memory is detrimental to memory bandwidth effi-

ciency, with Phytium 2000+ showing more restrictions

on the stanza length of prefetching than the regular

Xeons. To comply with this restriction, programmers

have to create the longest possible stanzas of contiguous

memory accesses, improving memory bandwidth.

23 24 25 26 27 28 29 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

stanza length L (in double-precision words)

0

2

4

6

8

10

12

14

Ba
nd

wi
dt

h
(G

B/
s)

Phytium 2000+ STriad
Intel Xeon Gold 6130 STriad

Fig.7. Performance of STriad on Phytium 2000+ (the x-axis is
in log scale and the results on Intel Xeon Gold 6130 are nor-
malized to those on Phytium 2000+).

4 Roofline Model Analysis

In this section, we use the well-known roofline model

to estimate the Phytium 2000+’s performance for vari-

ous scientific kernels. The roofline model is a visually-

intuitive and throughput-oriented approach of charac-

terizing a system’s performance for various arithmetic

intensities (floating-point operations per byte of DRAM

traffic) of algorithms [9]. This visualization and map-

ping of performance to algorithms helps to identify and

quantify the primary factors that limit the performance

of a given application. Such type of “bound and bot-

tleneck analysis” has the advantage of being more intu-

itive and user-friendly than traditional analytical per-

formance models.

10-1 100 101 102

Arithmetic Intensity [FLOPs/Byte]

101

102

103

P
e
rf

o
rm

a
n
ce

 [
G

FL
O

P
/s

e
c]

+neon+fma: 563.2 GFLOP/s

+neon: 281.6 GFLOP/sL1
: 2

21
7.

6
GB/s

L2
: 1

12
4.

4
GB/s

DDR4:
 1

53
.6

 G
B/s

Tr
ia

d:
 9

3.
6

GB/s

3.67

machine balance

0.25

SpMV

0.5

Stencil

Fig.8. Roofline for the Phytium 2000+ processor.

8 J. Comput. Sci. & Technol., January 2018, Vol., No.

Fig.8 shows the roofline model specialized for the

Phytium 2000+ system. The system’s double-precision

performance is 563.2 GFLOP/s and and its peak DDR4

memory bandwidth is 153.6 GB/s. This gives a ma-

chine balance of 3.67 (denoted by the orange vertical

line), which is calculated as the ratio of peak compute

throughput to memory throughput. This ridge point,

where the two lines meet, is the arithmetic intensity

at which an algorithm goes from being memory bound

to being compute bound on that system. To derive

more practical performance numbers, we also use the

sustainable triad memory bandwidth (93.6 GB/s).

Phytium 2000+ can be represented as a set of cores

with two-level on-chip caches connected to a DRAM

memory. And using the original roofline modeling ap-

proach is not sufficient to fully capture the performance

of Phytium 2000+ which relies on the on-chip memory

hierarchy. Ilic et al. further proposed a cache-aware

roofline model [10], based on a core-centric concept

where FP operations, data traffic and memory band-

width at different levels are perceived. Based on the

microbenchmarking results on the L1 and L2 caches

(Section 3), we add two more cache-relevant rooflines

to capture the memory accessing capabilities.

Using the roofline model, we can conduct a perfor-

mance analysis for a variety of scientific kernels. As

shown in Fig.8, for three kernels that are frequently

used in scientific applications – sparse matrix-vector

multiplication (SpMV), 3D stencil (Stencil), and gen-

eral matrix-matrix multiplication (GEMM) – we can

estimate a parallel performance upper-bound on the

Phytium 2000+ system. Note that, the arithmetic in-

tensity of GEMM depends on the matrix size, and we

do not show it in the figure. For example, for the SpMV

kernel, whose operational intensity is around 0.25, we

can expect a peak performance of 38.4 GFLOP/s (red

circle) with 64 threads or cores. The above analysis,

however, assumes the optimal memory bandwidth use

of Phytium 2000+ . Instead, if we use the sustainable

triad memory bandwidth, then the expected perfor-

mance would be 23.4 GFLOP/s (red square) instead.

If the SpMV dataset is sufficiently small to be within

the L1 cache (i.e., smaller than 64×32 KB), then the

expected performance would be 554.4 GFLOP/s (red

diamond) on the Phytium 2000+ system.

Our results show that the Phytium 2000+ system

is optimized for data intensive applications with low

operational intensities. Phytium 2000+ has a system

balance of 3.67, which suggests that it is well balanced.

This is different from many other systems whose system

balance typically ranges from 6 to 7 and which prefer

increasing the number of processing units rather than

the memory bandwidth [11]. By taking the difficult,

but effective, strategy of keeping a “balance” between

compute and memory throughputs, the Phytium 2000+

system is capable of delivering excellent performance for

a wide range of scientific kernels.

5 Applications

5.1 GEMM

General matrix-matrix multiplication (GEMM) is

a common algorithm in linear algebra, machine learn-

ing, and many other domains. Given that large-scale

GEMM and small-scale GEMM are used in differ-

ent scenarios, this subsection demonstrates how well

they perform on the Phytium 2000+ architecture. We

use four open-source GEMM libraries (OpenBLAS,

BLIS [12], BLASFEO [13], and Eigen) for the evalu-

ation.

5.1.1 Small-Scale GEMM

Fig.9(a) shows the performance results of small-

scale SGEMM on the Phytium 2000+ system. In our

experiments, square matrices are used with their sizes

J. Fang et al.: Performance Evaluation of Memory-Centric ARMv8 Many-Cores 9

0 25 50 75 100 125 150 175 200
Matrix szie(M=N=K)

0

20

40

60

80

100

Th
re

ad
 E

ffi
cie

nc
y(

%
)

OpenBLAS
BLIS
BLASFEO
Eigen

(a) Small SGEMM with a single thread

5120 5632 6144 6656 7168 7680 8192 8704 9216 9728 10240
Matrix szie(M=N=K)

0

20

40

60

80

100

Th
re

ad
 E

ffi
cie

nc
y(

%
)

OpenBLAS
BLIS
Eigen

(b) Large SGEMM with 64 threads

Fig.9. The performance of small-scale and large-scale SGEMM.

ranging from 5 to 200, with a step of 5. Since the size of

the matrix is small, we use a single thread to evaluate

the performance of each BLAS library. The execution

time is calculated as the average of 10 runs.

BLASFEO stands out as the best performer in

nearly all the input sizes tested, reaching a maximum

thread efficiency of 94%. This is because the matrix

represented in BLASFEO is stored in a panel-major

format, which has no data packing overhead, while the

other libraries are stored in either row-major or column-

major format. When the matrix dimension in BLAS-

FEO is a multiple of 4, there occurs a ridge point for

the GEMM performance, which is related to the index

computation of elements in the panel-major format [13].

When the dimension of the matrix is not a multiple of

4, BLASFEO has to pad the data structure with zeros,

resulting in an overhead.

OpenBLAS, BLIS and Eigen all suffer from the

packing overhead. We see that OpenBLAS achieves

better performance than the other two. This is due to

the fact that it employs hand-crafted assembly-coded

GEMM kernels. Eigen employs C++-coded GEMM

kernels, which fails to schedule instructions, resulting

in poor performance. Although both OpenBLAS and

BLIS employ hand-crafted assembly-coded GEMM ker-

nels, there exist differences in loop organization and

register blocking strategies.

5.1.2 Large-Scale GEMM

Fig.9(b) shows the performance results of large-

scale SGEMM on the Phytium 2000+ system. Because

BLASFEO does not have a multi-threaded version, we

only measure the performance of OpenBLAS, BLIS,

and Eigen. The matrix size ranges from 5120 to 10240,

with a step of 512, and we use 64 threads.

The performance of OpenBLAS, BLIS and Eigen

does not change significantly over the matrix size. BLIS

runs slightly faster than OpenBLAS, reaching over 70%

of Phytium 2000+’s theoretical peak. Eigen employs

C++-coded GEMM kernel, leading to bad performance

among the three BLAS libraries, achieving only 38% of

the theoretical peak. According to the prior experimen-

tal results [14], the single-thread GEMM performance

on Phytium 2000+ can reach 91% of the theoretical

peak. In terms of per thread GEMM performance, us-

ing 64 threads is 20% – 25% slower than using a sin-

gle thread. This slowdown comes from the overhead of

thread management and the shared L2 cache by every

four cores on Phytium 2000+ .

10 J. Comput. Sci. & Technol., January 2018, Vol., No.

5.2 SpMV

Sparse matrix-vector multiplication (SpMV) is an

essential kernel in linear algebra and is widely used in

scientific and engineering applications. This subsection

evaluates the performance of the SpMV kernel on the

Phytium 2000+ systems.

5.2.1 Impact of NUMA Bindings

As shown in Fig.8, SpMV is a memory-bound ker-

nel with an arithmetic intensity of 0.25. Thus, mem-

ory accesses on Phytium 2000+ have a direct impact

on SpMV’s performance. Phytium 2000+ exposes eight

NUMA nodes where a group of eight cores are directly

connected to a local memory module. Indirect access

to remote memory modules is possible but 1.5x slower

than accessing the local module (Subsection 3.2.5). We

use the Linux NUMA utility, numactl, to allocate the

required data buffers from the local memory module for

a thread that performs SpMV computation [15].

As can be seen from Fig.10, the NUMA-aware

memory allocation significantly outperforms the non-

NUMA-aware counterpart, giving an average speedup

ranging from 1.5x to 6x across five storage formats.

As such, we enable static NUMA bindings on the

Phytium 2000+ processor. We also observe that the

ELL format consumes the largest memory buffers

among the five storage formats, and thus can benefit

the most from using manual NUMA bindings.

CSR CSR5 ELL HYB SELL0

2

4

6

8

10

12

14

S
p
e
e
d
u
p
s

o
v
e
r

N

U
M

A
-u

n
a
w

a
re

(x
)

Fig.10. The diagram shows the speedup distribution of NUMA-
aware memory allocation on Phytium 2000+ (64 threads). The
thick black line shows where 50% of the data locates.

0 200 400 600 800 1000
0

10

20

30

40

50

60

G
Fl

o
p
s

csr
csr5
ell
hyb
sell

Fig.11. The overall SpMV performance on Phytium 2000+ (64
threads). The x-axis labels different sparse matrices ordered by
the number of nonzeros, and the y-axis denotes the achieved
SpMV performance in GFlops.

5.2.2 Overall SpMV Performance

Fig.11 shows the overall SpMV performance on

Phytium 2000+ with five storage formats (CSR,

CSR5 [16], ELL [17], SELL [18], and HYB [19]). Our es-

timation with the roofline model (Fig.8) indicates that

the maximum SpMV performance with 64 threads is

23.4 Gflop/s. But the achieved performance is much

larger than this estimated performance. This occurs

when the input sparse matrix can be hold within the

on-chip cache of Phytium 2000+.

We also see that there is no “one-size-fits-all” format

across inputs. On the Phytium 2000+ platform, SELL

is the optimal format for around 50% of the sparse ma-

trices and ELL gives the worst performance on most

of the cases. As such we need an adaptive scheme to

help developers to choose the optimal sparse matrix

format [20–22].

6 Related Work

For the effective use of the memory systems on mod-

ern architectures, researchers have obtained their per-

formance results and disclosed implementation details

through measurements.

Babka et al. [23] proposed experiments that inves-

tigate detailed parameters of the x86 processors. The

experiment is built on a general benchmark framework

and obtains the required memory parameters by per-

J. Fang et al.: Performance Evaluation of Memory-Centric ARMv8 Many-Cores 11

forming one or a combination of multiple open-source

benchmarks. It focuses on detailed parameters includ-

ing the address translation miss penalties, the parame-

ters of the additional translation caches, the cacheline

size, and the cache miss penalties.

McCalpin et al. [7] presented four benchmark ker-

nels (Copy, Scale, Add, and Triad), STREAM, to as-

sess memory bandwidth for a large variety current

computers, including uniprocessors, vector processors,

shared-memory systems, and distributed-memory sys-

tems. STREAM is one of the most commonly used mem-

ory bandwidth measurement tools in Fortran and C.

But it focuses on throughput measurement without

considering the latency metric.

Molka et al. [6] proposed a set of benchmarks, in-

cluding to study the performance details of the Nehalem

architecture. Based on these benchmarks, they ob-

tained undocumented performance data and architec-

tural properties. This is the first work to measure the

core-to-core communication overhead, but it is only ap-

plicable to the x86 architectures. Fang et al. extended

the microkernels to Intel Xeon Phi [24]. Ramos et

al. [25] proposed a state-based modelling approach for

memory communication, allowing algorithm designers

to abstract away from the architecture and the detailed

cache coherency protocols. The model is built based on

the measurement numbers of the cache-coherent mem-

ory hierarchy.

As for the Phytium 2000+ architecture, there are

a few related works on performance evaluation and

optimization. You et al. [4] evaluated three linear

algebra kernels such as matrix-matrix multiplication,

matrix-vector multiplication and triangular solver with

both sparse and dense datasets, aiming to provide per-

formance indicators for the prototype Tianhe-3 clus-

ter built from the Phytium 2000+ architecture. Su et

al. [14] presented a Shared Cache Partitioning (SCP)

method to eliminate inter-thread cache conflicts in the

GEMM routines on the Phytium 2000+ architecture.

This is achieved by partitioning a shared cache into

physically disjoint sets and assigning different sets to

different threads. Chen et al. evaluated and optimized

the SpMV kernel from various angles [20–22].

Different from the previous work, we provide a

systematic evaluation on the Phytium 2000+ many-

core architecture with a memory-centric perspective.

This evaluation work is performed at both the mi-

crobenchmark level and the kernel level, guided by a

Phytium 2000+ specified roofline model.

7 Conclusion

This article presents a comprehensive performance

evaluation of a 64-core ARMv8-based architecture.

We focused on cache and memory subsystems, an-

alyzing the characteristics that have an impact on

high-performance computing applications. We pro-

vided insight into the relevant characteristics of

the Phytium 2000+ processor using a set of micro-

benchmarks. We then analyzed the Phytium 2000+

processor at the system level using the well-known

roofline model. Using the knowledge gained from

these micro-benchmarks, we optimized two applica-

tions and used them to assess the capabilities of the

Phytium 2000+ system. The results showed that the

ARMv8-based many-core system is capable of deliv-

ering high performance for a wide range of scientific

kernels. Our evaluation results also indicate that the

shared L2 cache by four cores can be a performance

bottleneck for GEMM and leveraging a private L2 per

core is highly recommended for building future genera-

tions of Phytium processors.

Acknowledgement(s) We would like to thank the

anonymous reviewers for their valuable and construc-

tive comments. We thank Weiling Yang and Wanrong

12 J. Comput. Sci. & Technol., January 2018, Vol., No.

Gao from National University of Defense Technology for

the experiment support. This work is partially funded

by the National Key Research and Development Pro-

gram of China under Grant No. 2018YFB0204301, and

the National Natural Science Foundation of China un-

der Grant Nos. 61972408 and 61602501.

References

[1] M. A. Laurenzano, A. Tiwari, A. Cauble-Chantrenne,
A. Jundt, W. A. W. Jr., R. L. Campbell, and L. Carrington,
“Characterization and bottleneck analysis of a 64-bit armv8
platform,” in 2016 IEEE International Symposium on Per-
formance Analysis of Systems and Software, ISPASS 2016,
Uppsala, Sweden, April 17-19, 2016. IEEE Computer So-
ciety, 2016, pp. 36–45.

[2] N. Stephens, “Armv8-a next-generation vector architecture
for HPC,” in 2016 IEEE Hot Chips 28 Symposium (HCS),
Cupertino, CA, USA, August 21-23, 2016. IEEE, 2016,
pp. 1–31.

[3] C. Zhang, “Mars: A 64-core armv8 processor,” in 2015 IEEE
Hot Chips 27 Symposium (HCS). IEEE, 2015, pp. 1–23.

[4] X. You, H. Yang, Z. Luan, Y. Liu, and D. Qian, “Perfor-
mance evaluation and analysis of linear algebra kernels in the
prototype tianhe-3 cluster,” in Supercomputing Frontiers -
5th Asian Conference, SCFA 2019, Singapore, March 11-
14, 2019, Proceedings, ser. Lecture Notes in Computer Sci-
ence, D. Abramson and B. R. de Supinski, Eds., vol. 11416.
Springer, 2019, pp. 86–105.

[5] J. Dongarra, “Report on the fujitsu fugaku system,” Tech.
Rep. ICL-UT-20-06, June 2020.

[6] D. Molka, D. Hackenberg, R. Schöne, and M. S. Müller,
“Memory performance and cache coherency effects on an
intel nehalem multiprocessor system,” in PACT 2009, Pro-
ceedings of the 18th International Conference on Parallel
Architectures and Compilation Techniques, 12-16 Septem-
ber 2009, Raleigh, North Carolina, USA. IEEE Computer
Society, 2009, pp. 261–270.

[7] J. McCalpin, “Memory bandwidth and machine balance in
high performance computers,” IEEE Technical Committee
on Computer Architecture Newsletter, pp. 19–25, 12 1995.

[8] S. Kamil, P. Husbands, L. Oliker, J. Shalf, and K. A. Yelick,
“Impact of modern memory subsystems on cache optimiza-
tions for stencil computations,” in Proceedings of the 2005
workshop on Memory System Performance, Chicago, Illi-
nois, USA, June 12, 2005, B. Calder and B. G. Zorn, Eds.
ACM, 2005, pp. 36–43.

[9] S. Williams, A. Waterman, and D. A. Patterson, “Roofline:
an insightful visual performance model for multicore archi-
tectures,” Commun. ACM, vol. 52, no. 4, pp. 65–76, 2009.

[10] A. Ilic, F. Pratas, and L. Sousa, “Cache-aware roofline
model: Upgrading the loft,” IEEE Comput. Archit. Lett.,
vol. 13, no. 1, pp. 21–24, 2014.

[11] X. Liu, D. Buono, F. Checconi, J. W. Choi, X. Que,
F. Petrini, J. A. Gunnels, and J. Stuecheli, “An early per-
formance study of large-scale POWER8 SMP systems,” in
2016 IEEE International Parallel and Distributed Process-
ing Symposium, IPDPS 2016, Chicago, IL, USA, May 23-
27, 2016. IEEE Computer Society, 2016, pp. 263–272.

[12] K. Goto and R. A. van de Geijn, “Anatomy of high-
performance matrix multiplication,” ACM Trans. Math.
Softw., vol. 34, no. 3, pp. 12:1–12:25, 2008.

[13] G. Frison, D. Kouzoupis, T. Sartor, A. Zanelli, and M. Diehl,
“BLASFEO: basic linear algebra subroutines for embedded
optimization,” ACM Trans. Math. Softw., vol. 44, no. 4, pp.
42:1–42:30, 2018.

[14] X. Su, X. Liao, H. Jiang, C. Yang, and J. Xue, “SCP: shared
cache partitioning for high-performance GEMM,” TACO,
vol. 15, no. 4, pp. 43:1–43:21, 2019.

[15] C. Hollowell, C. Caramarcu, W. Strecker-Kellogg, A. Wong,
and A. Zaytsev, “The effect of NUMA tunings on CPU per-
formance,” Journal of Physics: Conference Series, vol. 664,
no. 9, p. 092010, dec 2015.

[16] W. Liu and B. Vinter, “CSR5: an efficient storage format
for cross-platform sparse matrix-vector multiplication,” in
Proceedings of the 29th ACM on International Conference
on Supercomputing, ICS’15, L. N. Bhuyan, F. Chong, and
V. Sarkar, Eds. ACM, 2015, pp. 339–350.

[17] R. Grimes, D. Kincaid, and D. Young, “Itpack 2.0 user’s
guide,” Center for Numerical Analysis, University of Texas,
Austin, Tech. Rep. CNA-150, 1979.

[18] M. Kreutzer, G. Hager, G. Wellein, H. Fehske, and A. R.
Bishop, “A unified sparse matrix data format for efficient
general sparse matrix-vector multiplication on modern pro-
cessors with wide SIMD units,” SIAM J. Sci. Comput.,
vol. 36, no. 5, 2014.

[19] N. Bell and M. Garland, “Implementing sparse matrix-
vector multiplication on throughput-oriented processors,” in
Proceedings of the ACM/IEEE Conference on High Perfor-
mance Computing, SC 2009, November 14-20, 2009, Port-
land, Oregon, USA. ACM, 2009.

[20] D. Chen, J. Fang, C. Xu, S. Chen, and Z. Wang, “Char-
acterizing scalability of sparse matrix-vector multiplications
on phytium FT-2000+,” Int. J. Parallel Program., vol. 48,
no. 1, pp. 80–97, 2020.

[21] D. Chen, J. Fang, S. Chen, C. Xu, and Z. Wang, “Optimiz-
ing sparse matrix-vector multiplications on an armv8-based
many-core architecture,” Int. J. Parallel Program., vol. 47,
no. 3, pp. 418–432, 2019.

[22] S. Chen, J. Fang, D. Chen, C. Xu, and Z. Wang, “Adap-
tive optimization of sparse matrix-vector multiplication on
emerging many-core architectures,” in 20th IEEE Interna-
tional Conference on High Performance Computing, HPCC
2018. IEEE, 2018, pp. 649–658.

[23] V. Babka and P. Tuma, “Investigating cache parameters of
x86 family processors,” in Computer Performance Evalua-
tion and Benchmarking, SPEC Benchmark Workshop 2009,
Austin, TX, USA, January 25, 2009. Proceedings, ser. Lec-
ture Notes in Computer Science, D. R. Kaeli and K. Sachs,
Eds., vol. 5419. Springer, 2009, pp. 77–96.

[24] J. Fang, H. J. Sips, L. Zhang, C. Xu, Y. Che, and A. L.
Varbanescu, “Test-driving intel xeon phi,” in ACM/SPEC
International Conference on Performance Engineering,
ICPE’14, Dublin, Ireland, March 22-26, 2014, K. Lange,
J. Murphy, W. Binder, and J. Merseguer, Eds. ACM, 2014,
pp. 137–148.

[25] S. Ramos and T. Hoefler, “Modeling communication
in cache-coherent SMP systems: a case-study with
xeon phi,” in The 22nd International Symposium on
High-Performance Parallel and Distributed Computing,
HPDC’13, New York, NY, USA - June 17 - 21, 2013,
M. Parashar, J. B. Weissman, D. H. J. Epema, and R. J. O.
Figueiredo, Eds. ACM, 2013, pp. 97–108.

J. Fang et al.: Performance Evaluation of Memory-Centric ARMv8 Many-Cores 13

Jian-Bin Fang is an assistant professor
in computer science at National Univer-
sity of Defense Technology (NUDT). He
obtained his Ph.D. from Delft University
of Technology in 2014. His research in-
terests include parallel programming for

many-cores, parallel compilers, performance modeling, and
scalable algorithms. He is a member of CCF.

Xiang-Ke Liao received his B.S. de-
gree from Tsinghua University, Beijing,
in 1985, and M.S. degree from National
University of Defense Technology (NUDT),
Changsha, in 1988, both in computer
science. Currently he is a full professor
of College of Computer at NUDT. His
research interests include high performance

computing systems, operating systems, and parallel and
distributed computing. Prof. Liao is a fellow of CCF and
an academician of Chinese Academy of Engineering.

Chun Huang is a full processor in
computer science at National University
of Defense Technology (NUDT). Her
research interests are high-performance
computing, system software, parallel com-
pilers, parallel programming, performance

optimization, and high-performance math libraries.

De-Zun Dong received his B.S., M.S.,
and Ph.D. degrees from the National Uni-
versity of Defense Technology (NUDT),
Changsha, in 2002, 2004, and 2010, re-
spectively. He is a professor in the College
of Computer, NUDT, where he leads the
research group of high-performance net-
work and architecture (HiNA) and serves

as the deputy director designer of Tianhe supercomputer.
His research interests focus on high-performance network
and architecture for supercomputer, datacenter and deep
learning systems. He has published over 60 peer-reviewed
papers in reputed international journals and conferences.

