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Abstract—General Matrix Multiplication (GEMM) is a key
subroutine in high-performance computing. There is a large
body of work on evaluating and optimizing large-scale matrix
multiplication, but how well the small-scale matrix multiplica-
tion (SMM) performs is largely unknown, especially for the
ARMv8-based many-core architectures. In this work, we eval-
uate and characterize the performance of SMM subroutines
on Phytium 2000+, an ARMv8-based 64-core architecture. The
evaluation work is extensively performed with the mainstream
open-source libraries including OpenBLAS, BLIS, BALSFEO,
and Eigen. Given various experimental settings, we observe how
well the small-scale GEMM routines perform on Phytium 2000+,
and then discuss the impacting factors behind the performance
behaviours of SMM. Built on such a basis, we shed light on the
performance bottlenecks and practical optimizations on SMM
from various angles: (1) mitigating the data packing overhead,
(2) processing the edge cases properly, (3) selecting a suitable
micro-kernel, and (4) adopting a right parallelization method.
The result of our work facilitates users to develop efficient SMM
optimizations on ARMv8-based many-core architectures, and
embed them into real-world applications.

Index Terms—Phytium 2000+, Small-scale GEMM, Perfor-
mance evaluation and optimization

I. INTRODUCTION

The high-performance computing (HPC) hardware is firmly
moving towards many-core designs [1]–[6]. Among them,
the ARMv8-based many-core processors, examplified by
Phytium 2000+ and A64FX, are emerging as interesting
alternative building blocks to the conventional x86 proces-
sors [7]–[12]. Phytium 2000+ has been used to build the pro-
totype of China’s new-generation exascale supercomputer [13],
and A64FX is the building block of the Fugaku supercom-
puter [12]. Therefore, it is vital to understand the performance
behaviours of typical HPC applications and kernels on such
many-core architectures.

General matrix multiplication (GEMM) is one of the most
fundamental linear algebra subroutines in big data analytics
and scientific computing. Processor vendors have provided
efficient BLAS (Basic Linear Algebra Subroutines) imple-
mentations that are highly optimized for their relevant micro-
architectures, e.g., Intel MKL [14], AMD ACML [15], and
NVIDIA cuBLAS [16]. The HPC community has also con-
tributed several high-quality open-source BLAS implementa-
tions, e.g., ATLAS [17], GotoBLAS [18], OpenBLAS [19],
and BLIS [20]. Both the vendor-specific BLAS libraries and
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the open-source libraries have been heavily optimized for
large-scale matrices on the mainstream x86 processors.

On the other hand, small-scale matrix multiplication (SMM)
equally plays an important role in many practical applications.
As an example, deep neural networks (DNN) are typically
built based on SMMs [21], [22]. Blocksparse matrix formats
such as Block Compressed Sparse Row Format can also
substantially benefit from fast SMMs [23]. When GEMM is
used for encoding checksums in the Algorithm-Bases Fault
Tolerance applications, the input often involves a tall-and-
skinny checksum weight matrix [24]. In this work, we refer
small-scale matrix multiplication (SMM) to be that the three
dimensions M,N,K of matrix multiplications are all very
small or one dimension is significantly smaller than the other
two (e.g., M � N and M � K).

There is a large body of research work on large-scale
matrix multiplications, but there is very little work for SMMs.
LIBXSMM is a SMM library targeted the x86 processors [23].
Prior work focuses on optimizing large-scale matrix multipli-
cations on Phytium 2000+ [25]. But how well the SMM sub-
routines perform on ARMv8-based many-core architectures is
largely unknown. Therefore, it is significant to evaluate SMM’s
performance to fully tap the computational potentials.

In this work, we use four mainstream open-source BLAS
libraries (OpenBLAS [19], BLIS [20], BLASFEO [26] and
Eigen [27]) to evaluate the performance of SMMs on
Phytium 2000+. We characterize how well SMMs perform
with various experimental settings, i.e., we use various sizes
of small matrices and different number of hardware cores. We
observe that there is a large gap between the achieved SMM
performance and the machine’s theoretical peak. Diving into
the performance behaviours of SMMs with analytical models,
we identity the impacting factors including (1) mitigating the
data packing overhead, (2) processing the edge cases properly,
(3) selecting a suitable micro-kernel, and (4) adopting a right
parallelization method. Built on such a basis, we shed light
on the performance bottlenecks and practical optimizations for
SMMs.

Our main contributions are summarized as follows.

• We provide a systematic performance evaluation of
SMMs on Phytium 2000+. We observe that the achieved
performance of SMMs varies over BLAS libraries, and
is far below the Phytium 2000+’s theoretical peak.



Fig. 1: A high-level view of the Phytium 2000+ architecture.
Processor cores are groups into panels (left) where each panel
contains eight ARMv8 based Xiaomi cores (right)

• We analyze the performance impacting factors of SMMs
on Phytium 2000+. These factors include the data packing
overhead, how to process edge cases, the selection of
micro-kernels and the parallelization method.

• Detecting the performance bottlenecks, we discuss how
to optimize SMMs and summarize a reference implemen-
tation of high-performance SMMs.

II. BACKGROUND

A. Phytium 2000+ Architecture

Figure 1 shows that Phytium 2000+ integrates 64 ARMv8
based Xiaomi cores. The CPU chip has eight panels, each with
eight cores running at 2.2 GHz [8], [9]. It can offer a peak
performance of 563.2 Gflops for double-precision operations,
with a maximum power consumption of 96 Watts.

Each Xiaomi core is an ARMv8-compatible core imple-
mented as a superscalar, out-of-order, 4-decode/4-dispatch
pipeline with a hybrid branch prediction. The front-end con-
sists of a 32KB instruction cache and a prefetch, for instruction
fetching and decoding. On hits, 2 cycles are required for
retrieval of instructions from the L1. The back-end performs
operations out-of-order for the most part and is in charge
of queuing instructions, executing them and retiring them.
Dispatch contains a 160-entry ReOrder Buffer (ROB) and can
dispatch up to 4 instructions per cycle. From dispatch, out-
of-order instructions go into 4 discrete scheduling queues: 2x
Integer/SIMD, 1x FP/SIMD, and 1x Load/Store. The Int/FP
queues are each 16-entry deep.

Each core has 32 128-bit vector registers, each of which
is capable of storing four single-precision floating-point num-
bers, and a private 32KB L1 data cache. Four cores share
a 2MB L2 cache. The panels are connected through two
directory control units (DCU). Each panel connected to its
own DDR4 memory module through the Memory Controller
(MC), shared by eight cores of this panel.

B. GEMM Structure

GEMM performs a matrix-multiply-accumulate operation
C = αAB + βC, where A, B, and C are matrices of
sizes M × K, K × N , and M × N , respectively, and α,
β are scalars. GEMM can be implemented with a straight-
forward three-nested loop, but achieving high performance

is complicated. This is mainly due to the fact that modern
many-core architectures have a hierarchical memory organi-
zation. Figure 4 illustrates the GEMM algorithm proposed
by Goto [28], including its multiple layers for blocking (to
maximize cache performance) and packing (to enable data to
be moved efficiently to the registers). Each loop of the original
three loop nests is tiled, resulting in a six-nested loop (referred
to as Layers 1-6) [25].

The outermost loop at Layer 1 partitions C and B into
(wide) column panels of sizes M×nc and K×nc, respectively.
The next loop at Layer 2 partitions A into column panels of
size M × kc, and further partitions a K × nc submatrix of
B into row panels of size kc× nc. At this loop level, Goto’s
packs the current kc×nc panel of B into a contiguous buffer
B̃. When there is an L3 cache in the target processor, the
buffer B̃ will reside completely in the L3 [29]; otherwise, it
will have to be kept in the main memory. The outermost two
loops partition matrix A and B to panel-panel multiplication
(GEPP). The Layer 3 partitions the M ×kc panels of A and a
M × nc submatrix of C into mc× kc blocks and row panels
of size mc× nc. At this point, blocks of A are packed into a
contiguous buffer Ã. The buffer is sized to occupy the majority
of the L2 cache, leaving sufficient space to prefetch other data
and the sliver of B̃. Up to now, we have Ã in the L2 cache
and B̃ in the L3 cache (or main memory).

The innermost three loops of Layers 4 – 6 is an architecture-
specific kernel, known as GEBP, which updates an mc × nc
panel of C by calculating the outer product of a block Ã of
mc × kc and a panel B̃ of kc × nc. The GEBP algorithm is
listed in Algorithm 1 [19]. The Layer 4 partitions a block B̃
into slivers of kc × nr and the Layer 5 partitions a block Ã
into slivers of mr×kc. Layer 5 and Layer 6 are referred to as
GEBS and GESS, respectively [29]. GESS, also known as the
micro-kernel in BLIS, performs a sequence of rank-1 updates
of an mr× nr sub-block of C using an mr× 1 column sub-
sliver of Ã and a 1 × nr row sub-sliver of B̃. Each rank-1
update is performed at Layer 7.

Figure 2 describes the data movements across all the levels
of memory hierarchy. Goto’s uses the outer-product formula-
tion to update a mr×nr block of C in the registers [28]. Note
that we have to load sub-sliver of Ã and B̃ from the L1 cache
for the next iteration (Lines 7-9 of Algorithm 1). A kc × nr
sliver of B̃ resides in the L1 cache during all the iterations at
Layer 5. The mr × kc sliver of Ã is streamed from L2, and
we have to reserve sufficient space in L1 for prefetching the
sub-slivers of Ã.

C. GEMM Implementations in BLAS Libraries

This subsection compares four open-source BLAS libraries,
including OpenBLAS [19], BLIS [20], BLASFEO [26], and
Eigen [27], in terms of blocking algorithms, data packing,
parallelization methods, and kernel routines.

Blocking algorithm. Figure 4 shows the blocking algorithm
of GEMM in OpenBLAS and BLIS. The matrix is stored in
the column-major format by default, so the algorithm starts
to block from the N dimension. But in Eigen, the matrix is



ALGORITHM 1 GEBP

Input: C, Ã, B̃, α
Output: C = αÃB̃ + C

1: for j = 1→ nc, step = nr do
2: for i = 1→ mc, step = mr do
3: TEMP Cmr×nr = 0
4: Load mr elements of Ãi1

5: Load nr elements of B̃1j

6: for k = 1→ kc, step = 1 do
7: Compute TEMP Cmr×nr + = Ãik × B̃kj

8: Load next mr elements of Ãik

9: Load next nr elements of B̃kj

10: end for
11: Load mr × nr elements of Cij

12: Compute Cij + = αTEMP Cmr×nr

13: Store Cij

14: end for
15: end for

Fig. 2: Packed data storage for GEBP in GotoBLAS.

stored in the row-major format, and its implementation starts
from the M dimension. BLASFEO is targeted for small-scale
matrices, and skips Layers 1-3 in Figure 4 [26].

Data packing. To better exploit the caches, matrices are
blocked and packed into continuous memory buffers that fit
into the caches before the kernel execution. In the outer three
loops of OpenBLAS, BLIS and Eigen, matrices A and B are
packed into Ã and B̃, and their storage format is shown in
Figure 2. The width of the panel inside Ã and B̃ is mr and nr,
respectively. Because BLASFEO does not have the outer three-
layer loop similar to OpenBLAS, the column-major format
needs to be converted to the panel-major format before matrix
multiplication. The panel size is fixed and denoted by ps. Both
mr and nr are a multiple of ps [26]. The panel-major format
is shown in Figure 3. The difference between the panel-major
format and the format of Ã is that the size of the former is fixed
and we have to finish format convertion at the very beginning
in Figure 4. Since data blocks are likely to be reused, it makes

Fig. 3: Storage format of BLASFEO: panel-major.

TABLE I: A comparison of library kernels

OpenBLAS BLIS BLASFEO Eigen

Layers of assembly Layer 4-7 Layer 6-7 Layer 6-7 none
unrolling factor 8 4 4 1
mr × nr 16x4,8x8,4x4 8x12 16x4,8x8 12x4

sense to store them in a panel-major format that is particularly
favorable for the SMMs [26].

Parallelization method. On multi-core CPUs, the GEMM
routines use OpenMP or Pthreads to exploit the computational
potentials. Marker et al. proposes a two-dimensional paral-
lelization for GEMM [30], where the whole computing task is
partitioned into a two-dimensional grid, and each thread works
on updating a GEPP sub-task. Typically, all the sub-tasks in
the same row are assigned to the same thread. OpenBLAS
adopts such a parallel method. In contrast, BLIS uses a multi-
dimensional GEMM parallelization method, which supports
the parallel execution on various loop levels [31]. Specifically,
this method enables the user to perform parallelization on
any combination of jj-loops, ii-loops, j-loops and i-loops
in Figure 4. Suppose that a processor has 64 threads. The
BLIS approach will use 8 threads to parallelize the ii-loop,
and let each thread perform a GEBP task. Within a GEBP
task, it will further use 8 threads to parallelize the j-loop.
This method helps to parallelize the task space in a more
fine-grained manner. The BLASFEO currently provides only
single-threaded routines for SMMs [26].

Kernel routine. At the core of in Figure 4 is the kernel routine
(Layers 4-7). The kernel routine of OpenBLAS is implemented
in assembly. Layers 6-7 is also known as micro-kernel. Both
BLIS and BLASFEO use assembly to implement this micro-
kernel. The size of micro-kernel (i.e. mr × nr) and the loop
unrolling factor has to be selected carefully according to
hardware features. Table I compares the differences of kernel
rountines among the BLAS libraries.

III. EMPIRICAL EVALUATION

This section provides a comprehensive performance presen-
tation of the small-scale matrix multiplications (SMM) on the
Phytium 2000+ processor and discusses the impacting factors
behind the performance behaviours.

Experimental settings. To investigate the factors that affect
the performance of SMM, we evaluate the performance of
OpenBLAS, BLIS, BLASFEO and Eigen with a single thread



Fig. 4: Blocking algorithms used in implementing GEMM, where GEBP is the inner kernel highlighted inside a red box.

(Figure 5) and multiple threads (Figure 10), respectively, on
Phytium 2000+. Note that, in Figure 5, the overall size of
the input data should be smaller than the size of the L2 cache,
which is to highlight the “small” feature of input matrices [23].
In Figure 5(a), the size of the square matrix ranges from 5
to 200, with a step of 5. In Figure 5(b), we aim to explore
the effect of changing M , whose size ranges from 2 to 40,
with a step of 2. We explore the effects of changing N
in Figure 5(c) and that of K in Figure 5(d). To investigate
the performance of various parallelization methods, we also
evaluate the performance of SMM with multiple threads on
Phytium 2000+. The small-scale matrices feature “irregular”
shapes, where the size of one dimension is significantly
smaller than the other dimensions. For each measurement, the
execution time is calculated as the average of 20 runs.

A. The Data Packing Overhead

Observation. From Figures 5(a)–5(c), we see that BLASFEO
performs significantly better than the other BLAS libraries,
and using Eigen yields bad GEMM performance. In the best
case, BLASFEO can reach 96% of the theoretical peak of
the Phytium 2000+ processor, while Eigen can only reach
58%. In addition, the performance behaviors of SMM for small
Ks (Figure 5(d)) differ significantly from those of small Ms
(Figure 5(b)) or Ns (Figure 5(c)).

Analysis. The matrix used in BLASFEO is stored in a panel-
major format, which has no data packing cost (Figure 3).
In contrast, OpenBLAS, BLIS and Eigen have to load data
into a panel data structure [19], [20], [28], which is essential
to exploit the on-chip caches on modern multi-core CPUs.
Further, the incurred overhead of data packing can be ignored
for large-scale GEMM. Su et al. have shown that the packing
overhead accounts for only around 3% of the total running
time for large-scale GEMM [25].

However, the data packing step has a significant impact on
the performance of SMM [26]. During data packing, we load
data elements for a total of O(M×N+K×N), and thereafter
we run calculations of O(M ×N ×K). We use packing-to-
computing ratio (P2C) to quantify the impact of data packing.
The number of load instructions required for data packing is:

Num Load =
M ×N +K ×N
Load width

(1)

where the numerator denotes the total number of data elements
for the matrix A and B, and Load width denotes the number
of floating-point data elements achieved by a load request.
Because the vector register of Phytium 2000+ is 16 bytes,
the Load width is 16/sizeof(float) = 4. The number of
the required arithmetic FMA instructions for GEMM can be
approximated as follows:

Num FMA =
M ×N ×K
FMA width

(2)
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Fig. 5: The SMM performance with a single thread.

where the FMA width means the number of floating-
point data a FMA instruction can compute. FMA width of
Phytium 2000+ is 2 × 16/sizeof(float) = 8. Therefore, the
P2C can be defined as follows:

P2C = Num Load/Num FMA =
M +N

2×M ×N
(3)

A smaller P2C means that the data packing overhead can
be better amortized by computing operations. When M and
N increase, the ratio decreases. Therefore, for GEMM with
small M or N , the packing overhead has a great impact on it.

To illustrate the data packing impact, we measure the
breakdowns of SMM with OpenBLAS. We see from Figure 6
that the smaller the M or N , the larger the proportion of the
packing overhead. In the worst cases, it accounts for more
than 50%. As a result, the data packing step becomes the
performance bottleneck for SMM. Figure 6 also shows that,
when K is very small, this overhead can be ignored. This is
because P2C is independent of K (Equation 3).

Summary. In the case of small Ms or Ns, the packing
overhead should be avoided as much as possible. At this time,
We recommend using the panel-major format implemented by
BLASFEO. Rather than using a fixed kernel, its size can be
calculated by the size of micro-kernel, i.e., mr × nr. But
when the BLASFEO panel format does not work, we have to
redesign the SMM algorithm and implementation, aiming to
hide the data packing overhead. The strategies such as avoiding
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Fig. 6: Data packing overhead for SMMs.

data packing and choosing to pack the partial of the relevant
matrix, can be used to achieve this goal.

B. Processing Method of Edge Cases

Observation. From Figures. 5(a)–5(c), we see that the per-
formance of these BLAS libraries fluctuates over the matrix
size. Taking OpenBLAS as an example, the performance of
M = N = K = 80 is 83.5%, which is significantly better than
its neighbouring matrix settings (M = N = K = 75 or 80).

Analysis. When the matrix size is not a multiple of the micro-
kernel (i.e., M is not a multiple of mr, and N is not a
multiple of nr), we have to deal with the edge cases. There



ldp s12, s13, [pB], #8

ldp s14, s15, [pB], #8

ldr q4, [pA], #16

ldr q5, [pA], #16
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Fig. 7: The 8x4 micro-kernel in OpenBLAS.
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are two main methods for edge case processing, which are
data padding and using edge micro-kernels [19], [20], [26].
The data padding approach will fill the edge case with zeros,
and thus introduce an additional overhead. This approach
is applied in BLIS and BLASFEO. As an alternative, the
edge micro-kernel is specially designed for computing edge
cases, and applied in the OpenBLAS library. Both approaches
suffer a loss in performance, when there occurs an edge case.
Different from that in large-scale GEMM, processing edge
cases in SMM takes a much larger percent. Consequently, it
is significant to deal with the edge cases of SMM efficiently.

There are two main factors that determine the impact of the
padding method on performance, i.e., the size of M and N ,
and the size of the edge case. The smaller the matrix means
that more zeros need to be padded, and these zeros are also
involved in the computation. When M and N are larger, these
extra computational overheads can be better amortized.

The performance of the edge micro-kernel method depends
on the size of an edge case and its implementation. We use
GEMM M = 75, N = K = 60 as an example, and for this
case, the size of the edge case is 11× 4. Calculating the edge
case requires a combination of the 8×4, 2×4, and 1×4 micro-
kernels. By diving into the OpenBLAS’s source code, we note
that such micro-kernels are not highly optimized, as shown in
Figure 7. We see that there are four ldr instructions next
to each other, while Phytium 2000+ has only two load units.

Moreover, the distance between the two dependent instructions
is too close to completely hide the latency slots. There are
many other inefficient edge micro-kernels in OpenBLAS, and
some even have a poor utilization of the SIMD instructions.

To illustrate the impact of the edge kernel methods, we
measure the kernel performance in OpenBLAS. In the exper-
iment, we fix M or N or K = 100 respectively, which helps
to characterize the performance impact of each dimension.
From Figure 9, we can see that the kernel can reach the
best performance (93.3% of the peak) when M = 80 and
N = 80. In the worst cases, the performance is only 71.8%.
This performance gap is mainly contributed to the usage of
inefficient edge micro-kernels. Therefore, the processing of
edge cases is critical to achieving high-performance SMMs.

Summary. Both the data padding method and the edge micro-
kernel method are able to efficiently deal with the edges cases.
But for SMMs, we prefer the latter one. There is a guiding
principle for designing an efficient edge micro-kernel: to use
aligned vector loads/stores and FMA instructions to facilitate
vectorization. Although Section III-A summarizes that the data
packing overhead should be avoided, we recommend hereby
packing the small amount of edge data to better fit the SIMD
unit. Suppose that the edge case size of N is 1 (i.e., N%nr =
1), as shown in Figure 8. Without data packing, the accesses
to the data elements of the edge case Be is discontiguous. In
this case, the ARMv8-based processor can not fully use FMA
instruction. Therefore, the data packing step is introduced here
to deal with the edge case.

C. Micro-kernel Selection

Observation. From Figures 9(a)–9(c), we see that the best
achieved efficiency of the SMM kernel is 93.3%. We argue
that there is still room for performance improvement in terms
of the micro-kernel design.

Analysis. The micro-kernels in OpenBLAS, BLIS, BLAS-
FEO, and Eigen have not been optimized specifically for
Phytium 2000+. For the best performance, each micro-kernel
and its instruction layout need to be optimized according
to the hardware specifics. Among them, the size of micro-
kernel affects compute-to-memory ratio (CMR) [29], and the
layout of instructions affect the distance between dependent
instructions. These two indicators are closely related to the
latency hiding among instructions.

The micro-kernel is calculated based on the outer-product
approach, which produces the result block (mr×nr) in matrix
C. The size of (mr × nr) is determined by the number of
vector registers in the processor. The ARMv8-based processor
offers 32 4-element-wide vector registers (called V0-V31),
assuming single precision. To store this C-result buffer, mr×nr

4
out of the 32 registers are needed. In addition, matrix A needs
at least one vector register to stage the temporary result, and
so does matrix B. Therefore, we have the following constraint
when designing a performant micro-kernel:

mr × nr
4

6 (32− 2) (4)
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Fig. 9: Kernel efficiency for SMMs in OpenBLAS (Note that this does not include the overhead of data packing).

mr × nr also has to ensure a large CMR, which helps hide
the memory access overhead. The CMR can be defined as:

CMR =
2×mr × nr
mr + nr

(5)

Theoretically, the larger the CMR, the greater the potential
for the memory access overhead to be hidden.

Furthermore, we have to consider the distance between
the Load and FMA instructions with a RAW dependency.
In the case of mr = 12, nr = 10, only 1 vector register
is available for A, and the same holds for B. At this time, the
distance between the Load and FMA instructions with RAW
dependency is 1. For the Phytium 2000+ processor, the latency
of fetching a word from L1 is 3 cycles [7], while that of L2 and
memory is much larger. In other words, the FMA instruction
has to wait at least 3 cycles until the required data is available.
Therefore, the instructions within a micro-kernel have to be
scheduled carefully to eliminate latency bubbles. Also the loop
within the micro-kernel has to be unrolled properly according
to the capacity of the instruction cache.

Summary. When designing a performant micro-kernel, mr
and nr has to be selected properly to statisfy the constraints
(4), and (5). Once these parameters are specified, the instruc-
tion layout of the micro-kernel needs to be carefully designed
to coordinate the computations and memory accesses.

D. Parallelization Method

Observation. From Figures 10(a)–10(c), we see that BLIS
performs the best for the small cases with 64 threads on
Phytium 2000+. OpenBLAS has especially poor performance
when M is small. When either M or N is very small, the
performance of the three BLAS libraries is far below the
theoretical peak of Phytium 2000+. In this case, BLIS is the
best performer among them, peaking at around 60%.

Analysis. The BLAS libraries (OpenBLAS, BLIS and Eigen)
use different parallelization methods. BLIS uses a multi-
dimensional GEMM parallelization method [31], which
chooses suitable loop levels to parallelize based on the matrix
feature. When a dimension is particularly small, BLIS will
choose not to parallelize this dimension, which helps to reduce
the workloads of processing edge cases per core. Let us take

SMM with M = 64 as an example. If using 64 threads to
parallelize the ii or i loop in this case, we will obtain that
mc = mr = 1. As we have discussed in Section III-B,
this computing method has a significant negative impact on
performance. But OpenBLAS and Eigen are not able to do
so. They divide the task matrix C into a two-dimensional grid.
Each thread uses the inner three loops in Figure 4 to update
the task block. When M or N is very small, there would be
a large number of edge cases.

Note that parallelizing the inner loops engenders better
spatial locality. This is because by doing so can we have one
large contiguous data block, rather than many small individual
data blocks (i.e., Ã or B̃) [31]. This helps to maintain the high
performance of micro-kernels. When looking into the source
code, we note that BLIS prefers parallelizing the j loop or
the i loop when M and N are large enough. But OpenBLAS
cannot parallelize these two loops. This further explains why
BLIS performs better than OpenBLAS.

Synchronization is required when using multiple threads and
it mainly occurs in three locations: packing Ã, packing B̃, and
the end of the kk loop. Our goal is to minimize the number of
synchronizations, and each thread needs to compute sufficient
workloads before synchronization. The workload here refers
to the computing and packing of GEBP tasks assigned to
each thread. Considering the synchronization overhead, we
should avoid using too many threads to parallel the j loop
and i loop. Thus, there will fewer threads involved in the
synchronization process. For SMM, BLIS can control the
synchronization operation in a more fine-grained manner than
OpenBLAS. Taking M = 128 as an example, BLIS can use 8
threads to parallelize the jj loop and 8 threads to parallelize
the j loop. As a result, there are only 8 threads participating
in each synchronization and each thread will have sufficient
workloads (i.e., mc × nc

8 × kc). But the number of threads
used by OpenBLAS is 64 and the workload is mc

64 × nc× kc,
which creates a synchronization performance penalty. This is
another reason why BLIS outperforms OpenBLAS for SMMs
with 64 threads on Phytium 2000+.

To locate the reasons why BLIS’s performance is still far
below the hardware’s theoretical peak, we measure the break-
downs of the multi-threaded SMM with small M . Table II
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Fig. 10: The performance comparison of OpenBLAS, BLIS and Eigen on SMMs with 64 threads.

TABLE II: The proportion of overhead of each part.(%)

M Kernel PackA PackB Sync Kernel effic

16 35.5 2 56.9 4.2 43.6
32 45.1 2.1 47.7 4 59.3
48 50 5 38.4 5.6 68.6
64 57.9 4.5 31.2 5.6 73.6
80 57.4 5.6 30.4 5.8 74.9
96 64.5 4 25.1 5.7 71.8
112 68.4 3.9 21.6 5.5 72.8
128 70.2 10 17.4 1.7 67.7
144 74 10.8 12.5 2 71.1
160 74.4 7.5 15.3 2.2 67.6
176 74.4 8.8 13 3.1 72.8
192 79.6 5.5 14 0.3 73.5
208 77.3 5.9 13.8 2.5 73.6
224 79.8 6.9 10.5 2.4 75.2
240 78.2 6.4 10.4 4.5 74.7
256 82.2 6.5 9.7 1.2 74.6

shows that the main overhead comes from the kernel execution
(Kernel) and the data packing for matrix B (PackB).
Further, we note that the kernel efficiency is lower than that
of the single-threaded SMM, ranging from 43% to 75%. We
guess that there are three reasons that affect the performance
of the multi-threaded kernel: (1) four cores share a non-LRU
L2 cache on Phytium 2000+, which increases the L2 cache
misses [25], (2) Phytium 2000+ is of an NUMA architecture,
which affects the efficiency of load/store instructions. (3) to
deal with edge cases, BLIS’s approach will result in additional
computational overheads. As for the overhead of PackB, its
performance impact has been explained in Section III-A.

Note that we need to balance the efficiency of kernel,
packing and synchronization. As we have aforementioned, we
should use as many threads as possible to parallel j loop and
i loop to achieve high kernel performance. Unfortunately, this
also increases the overhead of synchronization and packing.
Therefore, we have to tune the parallelization configuration in
BLIS to balance them for high performance [20].

Summary. For SMMs, we recommend using the multi-
dimensional parallelization method implemented by BLIS.
That is, when the size of a dimension (M , N , or K) is small,
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Fig. 11: Blocking algorithms used in implementing SMM.

we should choose not to parallelize that dimension. Besides,
we should control the synchronization operation in a fine-
grained manner to reduce the relevant overhead.

IV. A REFERENCE SMM IMPLEMENTATION

By characterizing SMM on Phytium 2000+, we have pin-
pointed the relevant performance bottlenecks. Built on the
analytics, we propose that a reference implementation of high-
performance SMMs should have the following features.

A packing-optional SMM. Section III-A shows that the step
of data packing takes a large percent of SMMs. Also, the
pipelining technique for large matrices is not applicable for
small-scale matrices. Thus, we argue that a packing-optional
implementation specially designed for SMM is required. To
achieve this goal, the conventional GEMM implementation
based on a six-nested loop should have to be restructured.

Having a set of optimal micro-kernels. Calculating GEMM
falls into the calling of a combination of micro-kernels.
Therefore, we have to design a set of optimal micro-kernels
according to hardware features. A concept design is shown in
Figure 11. We see that the sub-matrix A1 consistently resides
in the L1 for k-loop, and sub-matrix B1 resides in the L1 for
j-loop. Also, we pack B1 into continuous memory regions,
which is integrated in the kernel execution. The micro-kernel
here is different from the conventional implementation, which
needs to be designed according to the characteristics of SMM.

Adaptive code generation. Sections III-B and III-C show that
the best achieved performance for small matrices requires the



usage of various micro-kernels and their combinations. Given
an input matrix, we recommend using adaptive techniques
such as JIT (Just-In-Time) to generate an optimal combination
of micro-kernels. Further, the JIT technique helps to pre-
calculate the offsets of memory accesses. In this way, we can
achieve a match between SMMs and hardware architectures.

Multi-dimensional parallelization. Section III-D shows that
using a fixed parallelization approach often leads to a poor
performance. This is because SMM features an ‘unpredictable’
input shape, and performing parallelization on a wrongly
selected dimension suffers a loss in performance. Thus, we
have to use a multi-dimensional parallelization and make a
run-time decision based on the input matrices.

V. RELATED WORK

GEMM is an important operator for many applications in
a broad range of domains. The GEMM routine based on
X86 instruction has been thoroughly optimized and evaluated.
Many research works focus on large-scale GEMMs [18]–
[20] and SMMs [23], [32]. These optimized routines have
been integrated into some deep learning frameworks based on
X86 [33], [34].

Large-scale GEMM. In the memory access stage, Matrix A
and matrix B are tiled and packed into a continuous memory
according to the storage hierarchy of the processor [19], [28],
[35]. In order to ensure that the data accessed each time
resides in the cache. After GEMM enters the compution stage,
it needs to call the kernel routine, which is usually written
in assembly to keep the software pipeline busy [29], [36].
On multi-core CPUs, GEMM usually use threading APIs to
exploit the computing potentials of processors [30], [31]. Their
optimization work has achieved promising results for large-
scale matrices. However, it is still unknown how well the small
GEMM performs.

SMMs. To better integrate GEMMs into deep learning appli-
cations, researcher have optimized small-scale matrix multipli-
cations. LIBXSMM is a dense linear library for SMMs on the
X86 processors [23]. It uses the JIT technique to generate
a customized kernel for each input matrix, and schedules
instructions for the best performance. BLASFEO transforms
the matrix storage format into panel-major, thus eliminating
the data packing overhead in SMM [26]. But this panel-major
format is not necessarily useful in practical applications. Kim
et al. aims to make full use of the advantages of SIMD
architecture, and proposes a new compact data layout that
interleaves matrices in blocks according to the SIMD vector
length [32]. To summarize, the prior works have not optimized
and evaluated the SMMs on the ARMv8 architecture.

VI. CONCLUSIONS

This article evaluates the performance of GEMM routines in
OpenBLAS, BLIS, BLASFEO and Eigen on Phytium 2000+.
We mainly focus on small-scale matrix multiplications, ana-
lyzing the factors that affect the performance. We use a set of
benchmarks to evaluate the performance of single thread, and

multi-threaded SMMs. Then we investigate the performance
gaps between the achieved performance and the hardware
peak. At last, we propose a reference implementation of high-
performance SMMs based on our analytics. For the next step,
we plan to implement our reference SMM implementation and
then integrate it into the deep learning frameworks.
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