
1

BALS: Blocked Alternating Least Squares for
Parallel Sparse Matrix Factorization on GPUs

Jing Chen, Jianbin Fang, Weifeng Liu, Senior Member, IEEE and Canqun Yang

Abstract—Matrix factorization on sparse matrices has been proven to be an effective approach for data mining and machine learning.
However, the prior parallel implementations for matrix factorization fail to capture the internal social property embedded in real-world
use cases. This article presents an efficient implementation of the alternative least squares (ALS) algorithm called BALS built on top of
a new sparse matrix format for parallel matrix factorization. The BALS storage format organizes the sparse matrix into 2D tiles to avoid
repeated data loads and improve data reuses. We further propose a data reordering technique to sort sparse matrices according to
nonzeros. The experimental results show that BALS can yield a superior performance than state-of-the-art implementations, i.e., our
BALS generally runs faster than Gates’ implementation over different latent feature sizes, with a speedup of up to 2.08× on K20C,
3.72× on TITAN X and 3.13× on TITAN RTX. When compared with alternative matrix factorization algorithms, our BALS consistently
outperforms CDMF, cuMF CCD, and cuMF SGD over various latent feature sizes and datasets. The reordering technique can provide
an extra improvement of up to 23.68% on K20C, 19.87% on TITAN X and 20.38% on TITAN RTX.

Index Terms—Matrix factorization, Alternating least squares, Data reuse, Data reordering, Performance evaluation, GPGPUs

F

1 INTRODUCTION

Matrix factorization has been taken as one of the most
successful realizations of latent factor models and thus has
been widely used in the machine learning fields such as
collaborative filtering recommender systems [8]. Its task is to
fill in the missing entries of a partially observed matrix. The
input of matrix factorization is an incomplete relation matrix
R(m × n). In recommender systems, m and n denote the
number of users and items, respectively. Due to the sparsity
of R, matrix factorization maps both users and items to a
joint factor space of dimensionality f (i.e., latent feature), so
that predicting unknown ratings can be estimated by the
inner products of two vectors, xu of matrix X(m × f) and
yi of matrix Y(n× f),

rui = xuyi
T , (1)

where xu denotes the extent of user’s interest on items, yi
denotes the extent to which the item owns these factors, and
rui denotes an entry of R. The essence of this problem is to
obtain xu and yi so that R ≈ XYT . Figure 1 illustrates an
example for matrix factorization, where m=n=4 and f=2.

So far, there has been a large amount of work dedicated
to the design of fast and scalable methods for large-scale
matrix factorization problems [7, 8, 15, 24, 25, 34]. However,
matrix factorization over extremely sparse matrices (e.g.,
recommender datasets) is still a challenging issue [22, 27].
Among the factorization techniques, alternating least squares

• J. Chen, J. Fang and C. Yang are with the College of Computer, National
University of Defense Technology, Changsha, China, 410073.
E-mail: chjing@chalmers.se, {j.fang, canqun}@nudt.edu.cn

• W. Liu is with the Super Scientific Software Laboratory, Department
of Computer Science and Technology, China University of Petroleum,
Beijing, China, 102249.
E-mail: weifeng.liu@cup.edu.cn
(Corresponding author: Jianbin Fang and Weifeng Liu.)

Fig. 1. An example of sparse matrix factorization R ≈ XYT.

(ALS) has been proved to be an effective one [8]. Compared
to stochastic gradient descent (SGD) [5, 28], ALS is not only
inherently parallel, but can incorporate implicit ratings [8].
Nevertheless, ALS involves sparse matrix manipulation [10]
which is challenging to achieve high performance due to
imbalanced workload [11], random memory access [17]
and task dependency [13]. This particularly holds when
parallelizing and optimizing ALS on GPGPUs [3]. For this,
researchers have investigated various solutions. Rodrigues
et al. present a CUDA-based ALS implementation on GPU,
which runs faster than the implementation on a multi-
core CPU [20]. Tan et al. provide a CUDA-based matrix
factorization library (CuMF), which uses various memory-
related techniques to maximize the performance on one
or multiple GPUs [26]. Gates et al. propose a multi-core
CPU implementation and a GPU ALS solver for implicit
feedback datasets, which attains good performance through
an algorithm-specific kernel and is, thus far, the fastest
implementation among these ALS solvers on GPUs [4].

In spite of these efforts, the training speed of parallel
sparse matrix factorization based on the ALS algorithm has
not reached its optimum. Although the previous works have
used fine-grained techniques to exploit the hierarchical re-
sources on modern GPGPUs, they fail to capture and utilize
the internal social property embedded in the real-world
datasets [3, 7, 26]. This can be drawn from our observation

2

that there exist many users who have ratings for the same item,
and the number of such type of items are enormous in these
datasets. When computing X or Y, the prior approaches let
a thread or a block of threads work on a user vector (xu)
or an item vector (yi). But updating two user vectors might
need the same item vectors from Y. As a result, the same
vector would be loaded twice, leading to the redundant
data movements and a waste of memory bandwidth. The
motivating observations will be detailed in Section 3.

We propose an efficient implementation for parallel
sparse matrix factorization, BALS1, based on the alternating
least squares algorithm on GPGPUs. BALS aims to avoid
repeated data loads of row or column vectors from global
memory to shared memory and exploit data reuse based
on our observations. For this purpose, we propose a new
blocked storage format for sparse matrices by partitioning
a matrix into 2D tiles. To enhance data reuse, we further
propose a data reordering technique in BALS by sorting
rows and columns in the descending order of nonzeros.

The experimental results demonstrate a better perfor-
mance than the state-of-the-art implementations on three
generations of NVIDIA GPUs and six real-world datasets.
Overall, BALS runs the fastest among competitive imple-
mentations. It outperforms Gates’ implementation over dif-
ferent latent feature sizes, with an maximum speedup of
2.08×, 3.72× and 3.13× on K20C, TITAN X and TITAN
RTX respectively. We also compare BALS with alternative
matrix factorization algorithm implementations, seeing that
it outperforms CDMF [32], cuMF CCD [16] for CCD++
and cuMF SGD [30] for SGD over different latent feature
sizes on these three GPU platforms. Furthermore, data re-
ordering brings averagely extra 8.73%, 8.32% and 10.08%
performance improvement over various real-world datasets
on K20C, TITAN X and TITAN RTX, respectively. Note that
BALS is equally applicable to AMD GPUs, although its
implementation is in CUDA and on NVIDIA GPUs.

This paper makes the following contributions.

• We propose a new compressed storage format which
organizes a sparse matrix into 2D tiles to facilitate
data reuse during matrix factorization.

• We develop a parallel ALS implementation (BALS)
on GPGPUs with the storage format to avoid redun-
dant data movements across memory hierarchies.

• We propose a data reordering technique to decrease
the processing overhead and further enhance the
benefits of data locality.

• We evaluate how BALS performs compared with
the baseline implementations on three generations of
NVIDIA GPUs and six real-world datasets.

2 BACKGROUND

This section introduces the ALS-based matrix factoriza-
tion and analyzes its time and space efficiency.

2.1 ALS-based Matrix Factorization
Matrix factorization aims to learn the factors by minimiz-

ing the regularized squared error on the observed ratings,

1. BALS = Parallel Blocked ALS Implementation for Matrix Factor-
ization, and its source code is available at: https://bit.ly/35YUQvW.

 0

 20

 40

 60

 80

 100

10 20 30 40 50 60 70 80 90 100

A
L

S
 S

te
p

s
 B

re
a

k
D

o
w

n
 (

%
)

Step 1 Step 2 Step 3

Fig. 2. The illustration about the percentage of three ALS steps on
Netflix dataset. The three steps are (S1) YTY + λI, (S2) YT ru,
and (S3) solving the linear system.

L(X,Y) =
∑
u,i∈Ω

(rui − xTu yi)2 + λ(|xu|2 + |yi|2), (2)

where Ω are the known nonzero ratings of R, and xTu are the
uth row vectors of the matrix X, yi are ith column vectors
of matrix Y, the constant λ is the regularized coefficient to
avoid over-fitting. Therefore, the key to solve this problem
is to find approaches of getting the matrices X and Y.

The minimization principle of alternating least squares
is to keep one fixed while calculating the other: fixing Y to
calculate X so as to get vectors xu, and vice versa. Thus
the problem becomes a quadratic function. The procedure
iterates until it converges. First, we minimize the equation
over X while fixing Y, and the function becomes

L(X) =
∑
i∈Ωu

(rui − xTu yi)2 + λ|xu|2 (3)

By calculating the partial derivative of xu in Function 3
and letting the partial derivative equal zero, we obtain

xu = (Y TY + λI)−1Y T ru, (4)

where I is the unit matrix ranked f , and ru is the uth rows
of R. Likewise, we can obtain

yi = (XTX + λI)−1XT ri. (5)

2.2 Algorithm Analysis

The ALS algorithm has three steps, which are (S1)
Y TY + λI , (S2) Y T ru, and (S3) solving the linear system
when updating xu. As for S1, calculating YTY requires
nnzi× f × (f + 1)/2 multiply-add operations for a row of R,
where nnzi denotes the number of nonzeros in the current
row. Therefore, the total compute cost is nnz × f × (f + 1),
where nnz denotes the total number of nonzeros in R. In
terms of memory footprint, we need a matrix smat (sized
of f × f) to store the results of YTY when updating a row.
Thus, the total memory footprint for m rows is m × f × f .
Calculating S2 requires nnzi × f multiply-add operations
when updating the ith row of R. Thus, the total computing
cost of S2 is nnz × f × 2. This step needs a vector svec
sized of f to store the results of YT ru, and thus the total

3

0

5

10

15

20
P

o
p
u
la

ri
ty

 (
1
0

4
)

Movie ID

Fig. 3. The illustration about movie popularity among users over the
Netflix dataset (blue bars). The red bars demonstrate the popularity
of each movie by sorting the matrix according to the number of ratings.

memory footprint form rows ism×f . After obtaining smat
and svec, the cholesky decomposition method is exploited to
solve the linear system smat · xu = svec (S3). The time
complexity of updating a row of R is O(f3).

Figure 2 shows that YTY is the most time-consuming
step, which takes on average 90% of the end-to-end execu-
tion time over various latent factors. Therefore, optimizing
this step is the focus of our work. Similarly, calculating XTX
takes the most time of updating an item vector (yi).

3 MOTIVATION

This section starts with our observations coming from
the real-world datasets which motive our work.

3.1 Data Reuse
According to our statistics on various recommender

datasets, we observe that there exist popular items which have
been rated by the majority of users and, at the same time, there
exist users who have given a score to most, if not all, items.
Figure 3 shows the total number of ratings (a.k.a. popularity)
for each movie of the Netflix dataset. We see that some
movies are watched by many users (i.e., the movie has a
lot of ratings in one column), while other movies by only
a few (i.e., there are very few ratings for the corresponding
movie). This is why the diagram shows the vertical sparse
lines when the movies are popular.

In alternating least squares, updating a user vector (xu)
needs to load the data elements (i.e., nnzi column vectors
each sized of f) from Y according to the column indexes
of the items that the user has rated. When updating a
neighbouring user vector (xu+1), the same column vectors
of Y may be used again. This occurs when nonzeros from
two distinct rows of R share the same column index. Thus,
we can avoid the movement of one column vector in Y,
so as to save the memory bandwidth. Our observation from
Figure 3 has shown that this is a common case in recommen-
dation datasets. However, the previous implementations let
different threads (or thread blocks) work on distinct user
vectors [4, 26]. The already-loaded column vectors from Y
are either evicted out of caches or be manually overwritten
in scratch-pad memories. This is the same when we calculate
item vectors. In this work, we aim to exploit such a data
feature to avoid redundant movements.
Defining data reuse. If there exist two nonzeros of distinct
rows sharing the same column index, updating the corre-
sponding row vectors requires the same column vector from

(a) (b)

Fig. 4. The illustration of data reuse and the comparison before and
after data reordering, where the row block size of the matrix is 3. Matrix
Y denotes the collection of item vectors and sY is the cached content
used to update each user vector.

Y. Actually, we can avoid one extra data movement of f
data elements when updating the row vectors simultane-
ously. We regard this as a data reuse. Analytically, a data
reuse occurs once Equation 6 holds.

col idx[row ptr[starta+i]] = col idx[row ptr[startb+j]], (6)

where a and b are two rows in a row block of R, i denotes
the ith nonzero of row a and j denotes the jth nonzero
of row b. In BALS, we organize all rows into groups, each
of which is defined as a row block. Figure 4a illustrates the
concept of data reuse, where we group six rows into two row
blocks each with three rows. The first nonzero of R0 has
the same column index (C1) with the first nonzero of R1.
Thus, we only have to load the column vector once (vector
1 shaded in yellow). In the same way, the column vectors
(vectors 4 and 5) can be reused in the second row block.

3.2 Data Reordering

Figure 5 shows the nonzero distribution of the six
datasets. Each dot of the histogram represents the number
of rows with a certain number of nonzeros. We observe
that the number of nonzeros varies from very few to tens
of thousand, e.g., there are 197,277 rows, each with one
nonzero for the YahooMusic R1 dataset. We understand
that most elements of the sparse matrix are zeros. Due
to the data sparsity, there actually exists many scattered
vacant tiles and/or vacant row segments that are all zeros in
specific areas of the rating matrix. Dealing with such vacant
segments comes at a cost. If a specific 2D tile is vacant, we
only have to check it once and then skip it in the outer
iteration. But if there are several vacant row segments in
the tile, we have to enumerate the inner iteration to detect
these vacant row segments for multiple times, which takes
more time than checking a vacant tile. For this, we propose
to use a data reordering technique by sorting the rows and
columns of R in the descending order of nonzeros. By doing
so, many scattered vacant row segments cluster to form
new vacant tiles, which reduces the overhead of checking
separate vacant row segments.

The red part of Figure 3 shows how the movie ratings
distribute of Netflix with data reordering. We see that the
popular movies move towards left and leave the unpopular
movies on the right. Thus, data reordering can draw the
nonzeros to be closer, decrease the number of vacant row
segments and create more vacant tiles. Figure 4b illustrates

4

0

4

8

12

 1 10 100 1000 10000

c
o

u
n

t
o

f
ro

w
s
 (

1
0

2
)

nonzeros per row

(a) ML10M

0

10

20

30

40

 1 10 100 1000 10000

c
o

u
n

t
o

f
ro

w
s
 (

1
0

2
)

nonzeros per row

(b) ML20M

0

10

20

30

40

 1 10 100 1000 10000

c
o

u
n

t
o

f
ro

w
s
 (

1
0

2
)

nonzeros per row

(c) NTFX

0

4

8

12

16

20

 1 10 100 1000 10000

c
o

u
n

t
o

f
ro

w
s
 (

1
0

4
)

nonzeros per row

(d) YHR1

0

4

8

12

16

 1 10 100 1000 10000

c
o

u
n

t
o

f
ro

w
s
 (

1
0

5
)

nonzeros per row

(e) SLS

0

4

8

12

16

 1 10 100 1000 10000

c
o

u
n

t
o

f
ro

w
s
 (

1
0

5
)

nonzeros per row

(f) RUCI

Fig. 5. The nonzero distribution of rows of target datasets.

the data distribution after reordering ratings. Most nonzeros
move towards the top-left corner and the total data reuse
times increase by 1. Therefore, it is significant to perform
data reordering on the rating matrix to enhance data reuse
and decrease the processing overhead of vacant segments.

4 BALS DESIGN AND IMPLEMENTATION

This section introduces BALS with its data structures and
the ALS-based implementation details.

4.1 BALS Storage Format
To exploit data reuse for matrices with any sparsity

structures, we organize the sparse matrix into 2D tiles of
the same size (xb× yb), where xb and yb denotes the height
and the width of a tile, respectively. Thus, BALS has two
tuning parameters: xb and yb. To facilitate the ALS computa-
tion, BALS uses five data structures: value, tile_colidx,
tile_ptr, seg_colidx and seg_ptr.

Figure 6 shows an example matrix R with 9 users, 6
items and 21 nonzero elements. We partition R with xb=2,
yb=3, and there are a total of 10 tiles which are differentiated
with distinct colors. The value array stores all the nonzeros
of R, and the size of the array equals the total number of
nonzeros. The difference from the conventional CSR format
is that we store the nonzeros in a tiled fashion. The other
four data structures are illustrated in Sections 4.1.1 and 4.1.2.
The pseudocode of how to store rating data with our new
data format is shown in Algorithm 1.

4.1.1 Tile Information
We use two tile structures (tile_colidx and

tile_ptr) to indicate the column vectors to be loaded for
each tile, where tile_colidx stores the column indices of
the nonzeros within a tile (Lines 10-17 in Algorithm 1) and
tile_ptr stores the locations in the tile_colidx array
that start a tile (Lines 10-17 in Algorithm 1).

The tile_colidx structure consecutively stores the
column indices of each nonzero for the tiles of R. We skip
the ones that are redundant across rows of a tile. Note that
the indices are the ones in the global space of R, rather
than the local space. We regard those columns that have the
same column indices in a tile as redundant columns and thus

Fig. 6. A sparse matrix R (9 × 6) and its BALS data structures.

record their first appearance only. The array size equals the
number of nonzeros in R minus the number of redundant
columns. In Figure 6, there are four nonzeros in tile 0,
which are located in three distinct columns (i.e., columns
0, 1 and 2). Among them, the (r0, c0) element, valued 3,
shares an identical column index with the (r1, c0) element,
valued 2. Therefore, we take the column vector (from Y)
indexed by the (r1, c0) element as a redundant column. The
elements of the tile_colidx array are 0, 2, 1 for tile 0.
As for tile 1, there exists two nonzeros, i.e., the (r0, c4)
element and the (r1, c3) element, shown in Figure 6. Since
there is no redundant column in this tile, the following
two elements of tile_colidx are 4 and 3. In the same
way, we can fill tile_colidx for the other tiles. In BALS,
tile_colidx determines which column(s) to load from
global memory Y into shared memory sY. Compared with
the implementation in [4], we can avoid loading redundant
columns from Y.

The tile_ptr structure stores the beginning and end-
ing locations of each tile in tile_colidx. Thus, it can be
used to determine the starting and the ending indices of
the tile_colidx array to be visited. Figure 6 shows that
the starting index of tile 0 in tile_colidx is 0 and the
ending address is 2. The size of tile_ptr is the number of
tiles plus 1. When two adjacent elements in the tile_ptr
array are identical, we know there is no nonzero in the
current tile, which is defined as a vacant tile, e.g., tile 4 in
Figure 6. Such vacant tiles are skipped when calculating
ALS. The last element of tile_ptr denotes the number
of nonzeros except the redundant ones, which can be used
to calculate redundancy. Figure 6 shows there are 18 elements
except the redundant ones. The redundancy equals the
number of nonzeros minus the last element of tile_ptr,
i.e., 21− 18 = 3.

5

4.1.2 Segment Information

The tile structures tell us where to load columns
vectors from Y. Then we introduce another two segment
structures (seg_colidx and seg_ptr) to indicate the lo-
cations of column vectors cached in the high-speed on-chip
buffers (sY). Here we refer a row in a tile to be as a segment.

The seg_colidx structure stores the local indices of the
nonzeros for each segment (Lines 18-26 in Algorithm 1). This
structure allows us to determine which columns we should
use in the local buffer (sY). The reason of storing such local
indices is that we reorganize column vectors and skip the
redundant ones in a tile-wise manner when loading data
from global memory (Y) to shared memory (sY). The local
indices in seg_colidx are actually the tile-scoped locations
of the corresponding column vectors in tile_colidx. In
Figure 6, the (r1, c1) element of R is of value 4. The global
index of the corresponding column vector is located in the
third slot (outlined in red) of tile_colidx. Thus, the local
index of this column vector within the tile is located in the
fourth slot (outlined in red) of seg_colidx. Each nonzero
of R corresponds to an element of the seg_colidx array.
Therefore, this array is sized of nnz.

The seg_ptr structure stores the starting and the end-
ing locations of each segment in the seg_colidx array
(Lines 2-9 in Algorithm 1). In Figure 6, the starting index
of segment 1 (marked r1 of tile 0) is 2, indicating that the
segment starts with the third element in seg_colidx. Then
we access the corresponding elements in seg_colidx and
load seg_colidx[2] and seg_colidx[3]. Meanwhile,
we note that the ending index of segment 0 is the starting in-
dex of segment 1. When two adjacent elements in seg_ptr
are identical, we regard that the tile has a vacant segment.
The size of the array equals (rows× segments) + 1.

Algorithm 1 Storing a Rating Matrix in Our Format
1: h← 0, v ← 1, tile number ← rows/xb× columns/yb
2: for i← 0, tile number do . Step1: seg ptr
3: for j ← 0, xb do
4: for k ← row ptr[j], row ptr[j + 1] do
5: seg colidx[h]← col idx[k]
6: seg ptr[v] + +
7: end for
8: end for
9: end for

10: for i← 0, tile number do . Step2: tile ptr, tile colidx
11: for j ← seg ptr[i ∗ xb], seg ptr[(i+ 1) ∗ xb] do
12: if seg colidx[j]! = seg colidx[seg ptr[i ∗ xb]→ j − 1] then
13: tile colidx[h]← seg colidx[j]
14: h++, tile ptr[i+ 1] + +
15: end if
16: end for
17: end for
18: for i← 0, tile number × xb do . Step3: seg colidx
19: for j ← seg ptr[i], seg ptr[i+ 1] do
20: for k ← tile ptr[i/xb], tile ptr[i/xb+ 1] do
21: if seg colidx[j] == tile colidx[k] then
22: seg colidx[h]← k − tile ptr[i/xb]
23: end if
24: end for
25: end for
26: end for

Fig. 7. Illustration of threads configuration of BALS. R is partitioned into
two batches, each of which is divided into multiple 2D tiles.

4.2 BALS Implementation
4.2.1 Work Partitioning and Thread Mapping

BALS uses a batched implementation and updates batch
rows one time. As shown in Figure 7, each batch of R is
partitioned into 2D tiles, sized of xb × yb, which are stored
in our BALS format (Section 4.1). Each tile contains multiple
row segments, and the temporary result (YTY) for each
row segment is stored in an f × f matrix. The overall
temporary results for each row will be accumulated from
different segments of the row.

Overall, we partition the sY (Y) column vectors into
subvectors sized of nb. In this case, the f × f matrix YTY
is divided into (f/nb) × (f/nb) submatrices, each sized of
nb×nb. We use a 3D grid of thread blocks: (f/nb, f/nb, tb),
where (f/nb) × (f/nb) thread blocks are used to deal with
the computing task of a row block, as Figure 7 shows. A
row block can be further divided into a row of 2D tiles.
The third dimension of the thread-block configuration is tb,
which corresponds the number of row blocks of a batch.
Meanwhile, a 3D grid of thread configuration is exploited to
work on a single tile: (dx, dy, dz), where dx × dy threads
are employed to update a row segment of a tile and dz
corresponds to the number of row segments in the tile. Note
that dz is limited by the maximum number of threads per
block (1024). For instance, when dx=dy=4, the maximum
number of dz is 64. Thus, BALS can execute 64 rows of a tile
concurrently in this case. In Figure 7, we assume that f=8,
nb=4, dx=dy=2. The first batch of R is partitioned into 3×5
tiles. Thus, we exploit (2, 2, 3) thread blocks in this example.
The way of mapping a block of threads to a single tile is
shown in the left bottom of Figure 7. There are a total of (2,
2, 4) threads in a block and every 2×2 threads are spawned
to work on a row segment.

4.2.2 Implementation Details
Algorithm 2 shows the BALS implementation, which

takes three steps to solve YTY: (1) loading data into shared
memory from global memory (Lines 5-7 in Algorithm 2), (2)
calculating YTY with the data staged in shared memory
(Lines 8-14), and (3) storing results into global memory (Line
17). Figure 8 shows an example of the BALS kernel, where
xb=6, yb=6, nonzeros=8, f=32 and nb=16.

The first step is to load columns from Y in global mem-
ory to sY in shared memory. BALS accesses tile_colidx

6

Fig. 8. The schematic view of BALS. The left part of the figure shows
how we move data from Y to sY by visiting the arrays tile_ptr and
tile_colidx, while the right part illustrates how we compute sYT ·sY
for each segment with seg_ptr and seg_colidx.

and tile_ptr to determine which columns to load from Y
to sY. We check each row segment of the tile consecutively
and obtain the indices of columns to be loaded. For the first
row segment in Figure 8, there are two nonzeros having
distinct column indices of 1 and 3, respectively. For the
second row segment, the nonzero shares the same column
index with the second element of the first row segment.
Therefore, we only have to load the column vector once
into shared memory. In the same way, we enumerate the
remaining segments of this tile. By querying tile_colidx
and tile_ptr, we only have to load the column vectors
(C0, C1, C3, C4) of Y into the corresponding slots (C3’,
C0’, C1’, C2’) of sY. The storing order in shared memory
is determined by the element order in tile_colidx.

The second step is to calculate sYT sY, which is shown
in the right part of Figure 8. After obtaining sY, BALS
visits the seg_colidx and seg_ptr arrays to determine
which columns of sY to use for the calculation. There are
two elements in the first row segment, so the first and
second elements of seg_ptr array are 0 and 2, respectively.
The seg_colidx array stores the local column indices of
each nonzero in sY. For example, row segment 0 has two
elements, whose column indice corresponds to the first and
second columns of sY. Then, we use four thread blocks to
calculate sYT sY (f × f matrix) for each segment of a tile.

Algorithm 2 BALS Implementation
1: procedure BALS(Y , xb, yb, data structure; Y TY)
2: tile number ← columns/yb
3: for tn← 1, tile number do
4: if tile ptr[tn+ 1] > tile ptr[tn] then . Check vacant tile
5: for c← tile ptr[tn], tile ptr[tn+ 1] do . Load data
6: sY [c− tile ptr[tn]]← Y [c]
7: end for
8: for r ← 0, xb do . Calculate sY T × sY
9: if seg ptr[r + 1] > seg ptr[r] then

10: for k ← seg ptr[r], seg ptr[r + 1] do
11: r+ = sY [seg colidx[k]] ∗ sY [seg colidx[k]]
12: end for
13: end if
14: end for
15: end if
16: end for
17: Y TY ← r . Store temporary results
18: end procedure

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

(1536,4,4,4)

(768,8,4,4)

(384,16,4,4)

(192,32,4,4)

(96,64,4,4)

(768,8,8,8)

(384,16,8,8)

(192,32,8,8)

(96,64,8,8)

(384,16,16,16)

(192,32,16,16)

(96,64,16,16)

G
F

lo
p
s

K20C
TITAN X

Fig. 9. Selecting the best parameters for BALS of Netflix over two GPU
platforms, where f=64, xb=1280. The format of x-axis is (yb, nb, dx, dy).

In BALS, we allocate registers r sized of nb×nb×dxb/dze to
store and accumulate the temporary results of all the tiles.
The third step is to save the temporary results from r back
to the global memory.

4.3 BALS Tile Size Selection

Due to the uneven data distribution of the rating matrix,
using BALS will not bring a performance improvement
when there is insufficient data reuse in 2D tiles. Thus, we
need to pick a right block size of xb and yb for the tiles
of a given sparse matrix. Through running a large number
of experiments, we observe that BALS can achieve its best
performance when nb is the greatest common divisor of f and
dx (dy) is the lowest common multiple (greater than 2) of f .

On the other hand, the parameter yb is dependent on nb
and the size of shared memory. For instance, there are 48-KB
shared memory on K20C and each element sized of float
takes up four bytes. Therefore, the maximum value of yb is
192 when f=64 and nb=32. In this case, we use four thread
blocks to deal with the f × f matrix and need to allocate
two local buffers sY1 and sY2. That is,

48KB/(4B × 2× 32) = 192.

However, for this problem, the choice yb=192 does not
yield the best performance. We argue that a larger on-chip
memory will lead to a better performance. Figure 9 shows
the performance when using various tile configurations on
two GPUs (both with 48KB shared memory). We observe
that yb=192, nb=32 and dx=dy=4 is the best configuration
while f=64, xb=1280 on both K20C and TITAN X.

4.4 Data Reordering

By reordering rows or columns according to the number
of nonzeros in each row or column, the nonzeros will walk
towards the top-left corner of the rating matrix. Thus, we
can further increase the benefits of data reuse, and eliminate
the overhead of processing vacant segments. Algorithm 3
demonstrates how we reorder rows.

The inputs of data reordering algorithm are the original
rating matrix R in the conventional CSR format. The output
is the reordered matrix R′ represented with three updated
data structures (dr value, dr rowptr, and dr colidx). We
first initialize the intermediate variables and the temporary
arrays to be zero. Then, we obtain the longest row according
to the nonzeros of each row in R by calculating row ptr[u+
1] − row ptr[u]. After that, we store its information into

7

Algorithm 3 Data Reordering
1: procedure DATA REORDERING(R (val, row ptr, col idx); R′

(dr val, dr rowptr, dr colidx))
2: dr val, dr rowptr, dr colidx, h← 0
3: for u← 1,m do
4: find longest row lr ← row ptr[u+ 1]− row ptr[u]
5: for i← row ptr[lr], row ptr[lr + 1] do
6: dr val[h]← value[i]
7: dr colidx[h]← col idx[i]
8: h++
9: end for

10: dr rowptr[u+ 1]← dr rowptr[u] + length
11: length of lr ← −1
12: end for
13: end procedure

three temporary arrays, including nonzero values, col idx
and row ptr of this row. The final step is to reinitialize the
number of nonzeros in this longest row to be -1. In this
way, we can leave it out in the next iteration and obtain the
second longest row in the matrix. Reordering columns can
be performed in a similar way.

5 EXPERIMENTAL SETUP

This section introduces the hardware and software plat-
forms, and describes the real-world recommender datasets.

GPU Hardware and Software. NVIDIA Tesla K20C GPU,
TITAN X Pascal and TITAN RTX Turing are utilized for
the following experiments. Tesla K20C contains 13 stream-
ing multiprocessors (SM), each with 192 CUDA cores. The
theoretical peak floating point performance of K20C is 3.52
Tflops in single precision and 1.17 Tflops in double preci-
sion. TITAN X Pascal has 3840 CUDA cores spread across 30
streaming multiprocessors (SM) and six graphics processing
clusters (GPCs) from which 3584 are enabled on the TITAN
X Pascal. TITAN RTX Turing includes 4608 CUDA cores
across 72 SMs, 576 Tensor cores, 72 RT cores, 288 texture
units, and 36 PolyMorph engines. Not only does Titan RTX
sport more CUDA cores than GeForce RTX 2080 Ti, it also
offers a higher GPU Boost clock rating (1,770 MHz vs. 1,635
MHz). As such, its peak single-precision rate increases to
16.3 Tflops. Besides, we use CUDA v7.5 for K20C, CUDA
v8.0 for TITAN X and CUDA v10.2 for TITAN RTX re-
spectively, which is taken as the communication backbone
between CPU and GPU.

Input Datasets. We use six datasets (Movielens 10M,
Movielens 20M2, Netflix3, YahooMusic R14, Sls,
Rucci5) to evaluate the ALS performance. The format of
each dataset is (userID, itemID, rating). We pre-process
each dataset according to this format. The details of the
datasets are shown in Table 1. Note that m is the number
of users, n is the number of items, and nnz is the number
of the nonzero entries in the rating matrix R. The sparsity
of a rating matrix is calculated by nnz/(m × n). In the
experiments, the nonzero entries are in single precision.

Competitive Approaches. Rodrigues et al. introduce a basic
ALS implementation in CUDA [20], where each GPU thread

2. http://files.grouplens.org/datasets/movielens/
3. http://www.select.cs.cmu.edu/code/graphlab/datasets/
4. http://webscope.sandbox.yahoo.com
5. http://www.cise.ufl.edu/research/sparse/matrices/

TABLE 1
The recommender datasets.

Acronym m n nnz sparsity

Movielens 10M ML10M 71567 65133 8000044 0.0017
Movielens 20M ML20M 138493 27278 20000263 0.0053
Netflix NTFX 480189 17770 99072112 0.0116
YahooMusic R1 YMR1 1948882 98212 115248575 0.0006
Sls SLS 1748122 62729 6804304 6.21e-5
Rucci RUCI 1977885 109900 7791168 3.58e-5

updates a row xu of X (Equation 4) or a column yi of
Y (Equation 5). Thus, the implementation has a total of
m (or n) independent tasks and at most m (or n) threads
can run concurrently. As one GPU thread is used to update
a row of the X matrix, all the temporary data of YTY
is allocated dynamically in the kernel function. However,
when f becomes large, there is insufficient global memory
space remained for dynamic allocation and thus the kernel
failed to run. Therefore, the implementation does not scale
well over the latent factor. Given that their work is a baseline
implementation and only supports f=10, we only compare
other three ALS implementations in this section.

CuMF uses a thread block to update a row of the X
matrix or a column of the Y matrix [26]. The entire task
of calculating YTY is partitioned into multiple tiles, each
sized of 10 × 10. Then CuMF lets each thread work on
such a data tile. Instead of using a loop to iterate a 10 × 10
data tile, it fully unrolls the loop and allocates 100 registers
to store the temporary results of smat. Taking f=10 as
an example, CuMF uses only one thread to calculate the
temporary results of YTY.

Gates et al. present an ALS solver in CUDA [4]. They
leverage a batched implementation and use a 3D grid of
thread blocks, (

⌈
f
nb

⌉
,
⌈

f
nb

⌉
, batch). The product of YTY is

an f × f matrix for each row of R, and this task is divided
into sub-tiles sized of nb × nb. Each sub-tile is mapped
to a thread block. The approach moves the corresponding
columns of Y sized of kb × f into shared memory sY
(or sYT) and exploits (f/nb) × (f/nb) thread blocks to
calculate YTY. Meanwhile, they use a 2D grid of thread
configuration (i.e., each thread block has dx × dy threads)
and allocates a register file sized of (nb/dx) × (nb/dy) for
each thread to save the temporary results.

6 PERFORMANCE EVALUATION

This section reports how well BALS performs, by com-
paring BALS with the state-of-the-art ALS implementations,
and evaluating the performance impact of the reordering
techniques and BALS tuning parameters.

6.1 Comparison to State-of-the-Art Implementations
Figure 10 presents the comparison with other two state-

of-the-art ALS implementations (Gates’ and CuMF) over
different f (ranging from 10 to 100) on six datasets. BALS
generally runs the fastest among the three implementations
and Gates’ implementation runs the second on the three
GPUs. Specifically, our BALS implementation runs, on aver-
age, 1.26×, 1.46×, 1.30×, 2.19×, 2.30× and 2.25× faster than
Gates’ for Movielens 10M, Movielens 20M, Netflix,
Yahoomusic R1, Sls and Rucci on K20C, respectively.

8

 0

 500

 1000

 1500

 2000

 2500

10 20 30 40 50 60 70 80 90 100

G
F

lo
p
s

(M
L

1
0
M

)

CuMF-RTX
Gates-RTX

BALS-RTX

CuMF-X
Gates-X

BALS-X

CuMF-K20C
Gates-K20C

BALS-K20C

 0

 500

 1000

 1500

 2000

 2500

 3000

10 20 30 40 50 60 70 80 90 100

G
F

lo
p
s

(M
L

2
0
M

)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

10 20 30 40 50 60 70 80 90 100

G
F

lo
p
s

(N
T

F
X

)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

10 20 30 40 50 60 70 80 90 100

G
F

lo
p
s

(Y
H

R
1
)

 0

 200

 400

 600

 800

 1000

 1200

10 20 30 40 50 60 70 80 90 100

G
F

lo
p
s

(S
L

S
)

 0

 200

 400

 600

 800

 1000

 1200

 1400

10 20 30 40 50 60 70 80 90 100

G
F

lo
p
s

(R
U

C
I)

Fig. 10. Performance comparison of three ALS implementations with f
ranging from 10 to 100 on three GPUs.

TABLE 2
The speedup of BALS over CDMF and CuMF CCD (x)

Platform Comparison ML10M ML20M NTFX YHR1 SLS RUCI

K20C vs. CDMF 7.10 6.89 9.37 15.26 3.04 21.64
vs. CuMF CCD 2.75 2.31 4.04 9.09 1.79 11.39

X vs. CDMF 6.13 6.64 7.35 5.21 5.39 5.79
vs. CuMF CCD 3.50 7.18 9.01 7.28 9.68 17.88

RTX vs. CDMF 2.51 2.44 3.13 3.04 4.45 3.80
vs. CuMF CCD 2.09 3.86 3.22 5.53 10.03 14.40

The performance improvements (geometric mean) of BALS
over Gates’ implementation reach 24%, 28%, 11%, 28%, 15%
and 19% on TITAN X, and 20%, 30%, 11%, 49%, 31% and
39% on TITAN RTX on these six datasets, respectively.

When f is small, the performance gap between BALS
and Gates’ implementation over various datasets is small.
But when f increases, the performance gap becomes larger.
This is because a larger f allows for better data reuse, e.g.,
BALS achieves the maximum speedup of 4.38× over Gates’
when f=100 on K20C for YahooMusic R1. Note that CuMF
exploits a specially customized kernel for the case when f =
100, which leads to a dramatic performance improvement.

6.2 Comparison to SGD and CCD++

This section compares BALS with three state-of-
the-art CCD and SGD implementations: CDMF [32],
cuMF CCD [16] for CCD++ and cuMF SGD for SGD [30].

Figure 11 shows the performance comparison of CDMF,
cuMF CCD and BALS over different latent feature sizes
(from 8 to 96) on K20C, TITAN X and TITAN RTX. We
observe that BALS outperforms CDMF and CuMF CCD
over different latent feature sizes on six datasets, while not
changing the prediction accuracy (i.e., RMSE). We see that

 0.25

 1

 4

 16

 64

8 16 24 32 40 48 56 64 80 96

T
im

e(
s)

-M
L

1
0
M

 [
lo

g
]

CuMF_CCD-RTX
CDMF-RTX
BALS-RTX

CuMF_CCD-X
CDMF-X
BALS-X

CuMF_CCD-K20C
CDMF-K20C
BALS-K20C

 0.25

 1

 4

 16

 64

8 16 24 32 40 48 56 64 80 96

T
im

e(
s)

-M
L

2
0
M

 [
lo

g
]

 0.25

 1

 4

 16

 64

 256

 1024

8 16 24 32 40 48 56 64 80 96

T
im

e(
s)

-N
T

F
X

 [
lo

g
]

 0.25

 1

 4

 16

 64

 256

 1024

8 16 24 32 40 48 56 64 80 96

T
im

e(
s)

-Y
H

R
1
 [

lo
g
]

 0.125

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 64

8 16 24 32 40 48 56 64 80 96

T
im

e(
s)

-S
L

S
 [

lo
g
]

 0.25

 1

 4

 16

 64

 256

 1024

8 16 24 32 40 48 56 64 80 96

T
im

e(
s)

-R
U

C
I

[l
o
g
]

Fig. 11. Performance comparison of CDMF, CuMF CCD and BALS,
where we keep the same RMSE in this case.

0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99

1

0 4 8 12 16 20 24

Te
st

 R
M

S
E

Tranining Time [s]

cuMF_SGD

BALS

Fig. 12. Converge speed comparison between cuMF SGD and BALS
(each blue triangle dot represents a single ALS iteration, while each red
square dot represents 10 SGD iterations).

CDMF and CuMF CCD scale linearly, while BALS fluctu-
ates slightly due to the different best observed parameters
chosen for different f . Table 2 lists the average speedups of
BALS over CDMF and CuMF CCD, which shows different
level of performance speedups on six datasets.

We also compare BALS to cuMF SGD when f=128. The
performance results (in terms of GFlops) show that BALS
achieves an average speedup of 5.3× (5.6×) over six datasets
on TITAN RTX (K20C), compared to cuMF SGD. Figure 12
shows the RMSE comparison with regards to the training
time on TITAN RTX with Netflix dataset. Since ALS requires
more computations per iteration, it runs slower than SGD.
We also see that, the execution time of a single BALS
iteration equals to that of 4–5 cuMF SGD iterations. On
the other hand, BALS requires fewer iterations to coverage
than cuMF SGD. That is, BALS converges with around 5
iterations, whereas cuMF SGD requires around 40 iterations
to achieve the same RMSE.

9

(a) ML10M-K20C (b) ML10M-TITAN X (c) ML10M-TITAN RTX (d) ML20M-K20C (e) ML20M-TITAN X (f) ML20M-TITAN RTX

(g) NTFX-K20C (h) NTFX-TITAN X (i) NTFX-TITAN RTX (j) YHR1-K20C (k) YHR1-TITAN X (l) YHR1-TITAN RTX

(m) SLS-K20C (n) SLS-TITAN X (o) SLS-TITAN RTX (p) RUCI-K20C (q) RUCI-TITAN X (r) RUCI-TITAN RTX

Fig. 13. The performance impact over xb and yb and the performance comparison (GFlops) of BALS and Gates’ implementation (labeled on the
colorbar) before data reordering on various datasets, where f=32, nb=16, dx=dy=4. X-axis is xblock, from 256 to 7936, step increase is 512. Y-axis
is yblock, from 144 to 384, step increase is 16. A more visible version is available at: https://bit.ly/35YUQvW.

(a) ML10M-K20C (b) ML10M-TITAN X (c) ML10M-TITAN RTX (d) ML20M-K20C (e) ML20M-TITAN X (f) ML20M-TITAN RTX

(g) NTFX-K20C (h) NTFX-TITAN X (i) NTFX-TITAN RTX (j) YHR1-K20C (k) YHR1-TITAN X (l) YHR1-TITAN RTX

(m) SLS-K20C (n) SLS-TITAN X (o) SLS-TITAN RTX (p) RUCI-K20C (q) RUCI-TITAN X (r) RUCI-TITAN RTX

Fig. 14. The performance impact over xb and yb and the performance comparison (GFlops) between BALS and Gates’ implementation (labeled
on the colorbar) after data reordering on various datasets, where f=32, nb=16, dx=dy=4. X-axis and y-axis keep the same as Figure 13. A more
visible version is available at: https://bit.ly/35YUQvW.

6.3 Impact of xb and yb

The tile size xb and yb have a dramatic performance
impact on BALS, which determines the data reuse. Fig-
ures 13 shows the performance impact of xb and yb on var-
ious datasets and three GPUs. BALS’s performance changes
gradually with xb and yb, and the best tile size typically
appears on the top-left corner of heatmaps. Theoretically,
for a fixed yb (xb), the data reuse linearly increases with xb
(yb). However, in order to achieve the best performance in
BALS, it is necessary to balance the benefit from column

reuse and the computing cost due to increased number of
rows in a specific tile. As Figure 13 heatmaps show, the
performance changes from red to blue in most of cases when
xb increases, which indicates that the calculation cost caused
by increasing xb overtakes the benefit of data reuse. Also,
this observation hints best parameter choices. Note that
there exists a dramatic performance change for Movielens
20M and YahooMusic R1 on K20C and TITAN X, when xb
ranges from 256 to 1280, whereas this change is minor on
TITAN RTX. This comes from these datasets differing from

10

TABLE 3
The percentage of vacant tiles and segments and performance gain

Before Reordering After Reordering

Vacant Tiles Vacant Segments Benefits Vacant Tiles Vacant Segments Benefits

ML10M 43.67% 49.44% 11.88% 87.92% 7.82% 16.22%
ML20M 18.30% 63.85% 7.51% 27.81% 57.36% 0.25%
NTFX 2.38% 24.10% 0 0.59% 69.59% 0.15%
YHR1 52.28% 45.73% 23.65% 81.13% 17.31% 7.13%
SLS 26.35% 71.85% 9.04% 19.35% 79.07% 13.31%
RUCI 72.32% 26.92% 60.37% 72.95% 26.29% 41.60%

TABLE 4
The performance improvements of data reordering

ML10M ML20M NTFX YHR1 SLS RUCI

K20C 23.68% 11.72% 9.77% 6.26% 0.64% 0.33%
TITAN X 19.87% 11.92% 8.96% 5.87% 1.29% 2.02%
TITAN RTX 14.67% 14.07% 10.35% 20.38% 0.83% 0.18%

the rest. The first few rows of the two datasets have so few
nonzeros that the tiling benefits cannot offset the overhead.

The performance of Gates’ implementation [4] is la-
beled on the colorbar of Figure 13. We see that BALS can
outperform Gates’ implementation over various datasets
on K20C, TITAN X and TITAN RTX. The performance
improvements on TITAN RTX based on Gates’ imple-
mentation are upto 14.6%, 9.3%, 13.2%, 38.6%, 23.9% and
53.2% for Movielens 10M, Movielens 20M, Netflix,
Yahoomusic R1, Sls and Rucci, respectively. And BALS
obtains the largest performance improvement (by 99%) on
TITAN X for YahooMusic R1 when f=32, while using the
same configuration can achieve only half of that on K20C.
For Sls and Rucci, BALS achieves an average performance
improvement of 49.2% on TITAN X and 29.8% on K20C
compared to Gates’ implementation.

6.4 Vacant Tiles and Segments Analysis
The rating matrix R is divided into multiple 2D tiles in

BALS. Due to the sparsity of R, there exists a large amount
of vacant tiles/segments. Thus, we introduce an inspection
mechanism of identifying vacant tiles/segments. We count
the percentage of vacant tiles and segments of the six
datasets and measure the performance benefits of skipping
them when f=32 (Table 3). Note that we differentiate the
vacant tiles and vacant segments, i.e., those segments within
a vacant tile are excluded from pure vacant segments. We
see that the vacant tiles and vacant segments occupy a large
percentage in rating matrices, with an average 35.88% of
vacant tiles and 46.98% of vacant segments before reorder-
ing in the six datasets. As a result, we obtain various levels
of performance improvement when skipping these vacancy.
Using the inspection mechanism yields the largest perfor-
mance improvement of 60.37% Rucci, while the gain is
very little for Netflix. This is because Netflix is a denser
matrix among the recommender datasets, whose sparsity is
shown Table 1). The percentages of vacant tiles and vacant
segments are much less than those of other datasets.

6.5 Impact of Data Reordering
BALS clusters the nonzeros of the rating matrix to exploit

data locality with the data reordering technique. Table 3
shows that the proportions of vacant tiles and segments
change significantly after reordering. The percentages of

vacant tiles for most datasets are larger, while the percent-
ages of vacant segments drop except Netflix and Sls.
When the nonzeros cluster as much as possible, the scattered
vacant segments without reordering form new vacant tiles,
and thus we have more vacant tiles and fewer vacant
segments with the reordering technique.

Figures 13 and 14 show the performance impact of data
reordering. First, the performance (xb,yb) configurations
(red) move towards the left parts after data reordering.
Thus, the best tile configuration changes by reordering
rows or columns. For Movielens 10M, BALS performs
the best when xb=1280, yb=384 before reordering on K20C
and xb=768, yb=384 on TITAN X, whereas the best config-
uration is of xb=256, yb=384 after reordering. Second, the
best observed tile configuration differs across datasets. The
best performance is achieved at xb=2816, yb=384 on K20C
before reordering and at xb=768, yb=384 after reordering
for Movielens 20M. Third, we summarize that achieving
the best performance without data reordering requires more
rows within a tile to exploit data reuses. Fourth, enlarging xb
cannot improve the performance after reordering R, which
leads to broader blue fields in Figure 14 compared with
Figure 13. This is because most data move to left upper
part with reordering, and the data reuse occurs in most left
upper part. Therefore, it has much less data and no extra
significant data reuse by using a larger xb, which leads to a
lower performance.

Our data reordering technique brings further perfor-
mance improvement, compared to Gates’ implementation.
Table 4 lists the performance improvements of the data
reordering technique over the six datasets in BALS when
compared with the performance without data reordering.
We obtain different levels of performance improvements,
with an average improvement of 8.73%, 8.32% and 10.08%
on K20C, TITAN X and TITAN RTX, respectively. The
performance improvement for Movielens 10M increases
by 23.68% on K20C, 19.87% on TITAN X and 14.67% on
TITAN RTX. However, we observe that the data reordering
technique brings a rather small performance improvement
for the Sls and Rucci datasets. This is because their matrix
shape is more structured, and their nonzeros distribute more
evenly across rows or columns than the other four datasets.

6.6 Impact of Feature Space Size

The first step of YTY is to load corresponding column
vectors each sized of f from Y to sY. A larger f allows more
data to be loaded to on-chip memories. And using BALS
can avoid redundancy×f repeated data loads. As a result,
BALS can avoid a large amount of data loads from off-chip
to on-chip when f is large. Figure 15 shows the performance
impact of the feature space size (f ranging from 8 to 96)
on the three platforms. We note the BALS performance
trend being mostly independent of the architecture, while
there exists a significant difference in the actual performance
numbers. We observe minor fluctuations between f=8 to
56 on K20C and TITAN RTX. But after f=56, it is obvious
that BALS has a dramatic performance improvements due
to more data uses and fewer data loads.

11

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

8 16 24 32 40 48 56 64 80 96

G
F

lo
p
s
 (

M
L
1
0
M

)

K20C
TITAN X

TITAN RTX

 0

 500

 1000

 1500

 2000

 2500

8 16 24 32 40 48 56 64 80 96

G
F

lo
p
s
 (

M
L
2
0
M

)

 0

 500

 1000

 1500

 2000

 2500

 3000

8 16 24 32 40 48 56 64 80 96

G
F

lo
p
s
 (

N
T

F
X

)

 0

 500

 1000

 1500

 2000

 2500

 3000

8 16 24 32 40 48 56 64 80 96

G
F

lo
p

s
 (

Y
H

R
1

)

Fig. 15. The performance impact of different f ranging from 8 to 96 on BALS, where xb, yb exploit the best observed parameters from Section 6.3.

7 RELATED WORK

This section discusses four matrix factorization algorithms
and their state-of-the-art parallel implementations.

The ALS solver. GraphLab implements ALS by distribut-
ing matrix on multiple machines for large matrices, which
results in heavy cross-node traffic and high network band-
width [12]. Spark MLlib leverages partial matrix replica-
tion to parallelize ALS [14]. CuMF is a CUDA-based matrix
factorization library, which implements memory-optimized
ALS to solve large-scale matrix factorization on either single
or multiple GPUs. Gates et al. formulate ALS as a mix
of cache-optimized algorithm-specific kernels and batched
Cholesky factorization [9], and accelerate it on GPUs and
multi-threaded CPUs [4]. Zhou et al. introduce a new paral-
lel algorithm ALS-WR (weighted regulation) for large-scale
problems by using parallel Matlab on a linux cluster [34].

The CCD solver. Yu et al. propose a scalable method
(CCD++), which has a different update sequence from the
conventional CCD (Cyclic Coordinate Decent) and updates
rank-one factors one by one. The algorithm has two par-
allel implementations: one for multi-core shared memory
systems and the other for distributed systems [33]. Recently
Nisa et al. improve the CCD++ method on GPUs with loop
fusion and tiling [16]. Yang et al. present an efficient and
portable CDMF solver on multi-core CPUs and GPUs [32].
They balance the factorization loads by organizing the
nonzeros of rating matrices.

The SGD solver. Paine et al. present an asynchronous SGD
to speed up the neural network training on GPUs [18].
In [1, 35], the authors propose a delayed update scheme and
a bootstrap aggregation scheme to speed up SGD. HogWild
uses a lock-free approach to parallelize SGD, that is more
efficient than the delayed update scheme [19]. DSGD (Dis-
tribute SGD) partitions the ratings matrix into several blocks
and updates a set of independent blocks concurrently [5].
Kaleem et al. show that the parallel SGD can run efficiently
on GPU, and their GPU implementation is comparable to a
14-thread CPU implementation [6]. CuMF_SGD is a CUDA-
enabled SGD solution for large-scale matrix factorization
problems, which uses two workload scheduling schemes
and a partitioning scheme to utilize multiple GPUs [31].
Factorbird uses a parameter server to scale models that
exceed the memory of an individual machine, and employs
a lock-free learning with a special partitioning scheme to
reduce conflicting updates [23]. Sallinen et al. present a scal-
able, communication-avoiding implementation of SGD and
demonstrate near-linear scalability on a 14-core system [21].

The SVD solver. The recommendation problem is how
to compute a mapping of items and uses to factor vec-
tors [8, 29]. In the collaborative filtering domain, singular
value decomposition (SVD) is a well-established technique
of identifying latent feature factors. However, the conven-
tional SVD is often inapplicable in matrix factorization of the
recommendation field due to the high percentage of missing
entries in the sparse user-item matrix. Moreover, overfitting
can occur if the sparse matrix is addressed carelessly. Prior
works leverage an approach of simply ignoring the missing
ratings in the sparse matrix, and directly modeling the
observed ratings. Ma proposed four variants of SVD to
solve large-scale matrix of collaborative filtering instead
of the conventional SVD [2]. They observed that complete
incremental learning which updates feature values after
scanning a single training score of R, is the best choice for
collaborative filtering with millions of training instances.
This method minimizes the object function and addresses
the negative gradients for each user and item according to
each non-zero elements of the R matrix per time. Therefore,
it requires a total of nnz iterations.

8 CONCLUSION

In this work, we have proposed BALS, an efficient
implementation of the least squares algorithm for large-
scale matrix factorization on GPUs. Through analyzing the
algorithm and the recommendation datasets, we observed
that there exist many repeated data loads during the ALS
factorization. BALS aims to improve the data-moving effi-
ciency across memory hierarchies. At the core of BALS is a
new compressed blocked storage format for sparse matrices,
which is used to build a blocked ALS implementation.
We have further developed a data reordering technique to
enhance the data locality. Our experiments reveal that our
approach can outperform state-of-the-art implementations.
Our implementation generally runs faster than Gates’
implementation with a speedup of up to 2.08× on K20C,
3.72× on TITAN X and 3.13× on TITAN RTX. BALS also
outperforms CDMF, cuMF_CCD and cuMF_SGD over differ-
ent latent feature sizes on K20C. Furthermore, reordering
brings another performance improvement of up to 23.68%
on K20C, 19.87% on TITAN X and 20.38% on TITAN RTX.

ACKNOWLEDGMENTS

The authors would like to thank our anonymous re-
viewers for their invaluable comments and suggestions.
This research was supported by the National Key R&D
Program of China under Grant No. 2018YFB0204301, the

12

National Natural Science Foundation of China under Grant
No. 61972408 and 61972415, the Science Challenge Project
under Grant No. TZZT2016002, and the Science Foundation
of China University of Petroleum, Beijing under Grant No.
2462019YJRC004, 2462020XKJS03.

REFERENCES
[1] A. Agarwal and J. C. Duchi. Distributed delayed stochastic

optimization. In NIPS 2011.
[2] C. chao Ma. A guide to singular value decomposition for

collaborative filtering. 2008.
[3] J. Chen et al. Efficient and portable ALS matrix factoriza-

tion for recommender systems. In IPDPS Workshops 2017.
[4] M. Gates et al. Accelerating collaborative filtering using

concepts from high performance computing. In Big Data
2015.

[5] R. Gemulla et al. Large-scale matrix factorization with
distributed stochastic gradient descent. In SIGKDD 2011.

[6] R. Kaleem et al. Stochastic gradient descent on gpus. In
GPGPU@PPoPP 2015.

[7] K. Kaya et al. Parallelized preconditioned model building
algorithm for matrix factorization. In MOD 2017.

[8] Y. Koren et al. Matrix factorization techniques for recom-
mender systems. IEEE Computer, 2009.

[9] J. Kurzak et al. Implementation and tuning of batched
cholesky factorization and solve for nvidia gpus. IEEE
Transactions on Parallel and Distributed Systems, 2016.

[10] W. Liu. Parallel and Scalable Sparse Basic Linear Algebra
Subprograms. PhD thesis, University of Copenhagen, 2015.

[11] W. Liu and B. Vinter. Csr5: An efficient storage format for
cross-platform sparse matrix-vector multiplication. In ICS
2015.

[12] Y. Low et al. Distributed graphlab: A framework for
machine learning in the cloud. PVLDB, 2012.

[13] Z. Lu, Y. Niu, and W. Liu. Efficient block algorithms for
parallel sparse triangular solve. In ICPP 2020.

[14] X. Meng et al. Mllib: Machine learning in apache spark.
CoRR, abs/1505.06807, 2015.

[15] D. K. Nguyen and T. B. Ho. Accelerated parallel and
distributed algorithm using limited internal memory for
nonnegative matrix factorization. J. Global Optimization,
2017.

[16] I. Nisa et al. Parallel ccd++ on gpu for matrix factorization.
In GPGPU 2017.

[17] Y. Niu, Z. Lu, M. Dong, Z. Jin, W. Liu, and G. Tan.
Tilespmv: A tiled algorithm for sparse matrix-vector mul-
tiplication on gpus. In IPDPS 2021.

[18] T. Paine et al. GPU asynchronous stochastic gradient
descent to speed up neural network training. CoRR,
abs/1312.6186, 2013.

[19] B. Recht et al. Hogwild: A lock-free approach to paralleliz-
ing stochastic gradient descent. In NIPS 2011.

[20] A. V. Rodrigues et al. Accelerating recommender systems
using gpus. In Applied Computing 2015.

[21] S. Sallinen et al. High performance parallel stochastic
gradient descent in shared memory. In IPDPS 2016.

[22] M. T. Schaub et al. Sparse matrix factorizations for fast
linear solvers with application to laplacian systems. SIAM
J. Matrix Analysis Applications, 2017.

[23] S. Schelter et al. Factorbird - a parameter server approach
to distributed matrix factorization. CoRR, abs/1411.0602,
2014.

[24] U. Simsekli et al. Parallelized stochastic gradient markov
chain monte carlo algorithms for non-negative matrix fac-
torization. In ICASSP 2017.

[25] G. Takács et al. Scalable collaborative filtering approaches
for large recommender systems. Journal of Machine Learn-
ing Research, 2009.

[26] W. Tan et al. Faster and cheaper: Parallelizing large-scale
matrix factorization on gpus. In HPDC 2016.

[27] D. Tao et al. Large sparse cone non-negative matrix
factorization for image annotation. ACM TIST, 2017.

[28] C. Teflioudi et al. Distributed matrix completion. In ICDM
2012.

[29] L. Wu and A. Stathopoulos. A preconditioned hybrid svd
method for accurately computing singular triplets of large
matrices. SIAM J on Science Computing, 2015.

[30] X. Xie et al. Cumf sgd: Parallelized stochastic gradient
descent for matrix factorization on gpus. In HPDC 2017.

[31] X. Xie et al. Cumf sgd: Fast and scalable matrix factoriza-
tion. CoRR, abs/1610.05838, 2016.

[32] X. Yang et al. High performance coordinate descent matrix
factorization for recommender systems. In CF 2017.

[33] H. Yu et al. Scalable coordinate descent approaches to
parallel matrix factorization for recommender systems. In
ICDM 2012.

[34] Y. Zhou et al. Large-scale parallel collaborative filtering
for the netflix prize. In AAIM 2008.

[35] M. Zinkevich et al. Parallelized stochastic gradient de-
scent. In NIPS 2010.

Jing Chen is currently a PhD student in
Chalmers University of Technology, Sweden.
She received her Master degree in computer sci-
ence from National University of Defense Tech-
nology (NUDT), China, in 2018. Her research in-
terests are energy efficient task scheduling run-
time, power modeling, recommender systems
and GPU parallel programming.

Jianbin Fang is an assistant professor in com-
puter science at NUDT. He obtained his Ph.D.
from the Parallel and Distributed System Group
at Delft University of Technology. His research
interests include parallel programming for many-
cores, parallel compilers, performance model-
ing, and scalable algorithms.

Weifeng Liu is a Full Professor at China Univer-
sity of Petroleum (CUP), Beijing. He received his
Ph.D. from the University of Copenhagen, and
has been an EU Marie Curie Fellow at the Nor-
wegian University of Science and Technology.
He received his B.E. degree and M.E. degree in
computer science both from CUP. His research
interests include numerical linear algebra, paral-
lel computing and mathematical software.

Canqun Yang is now a full processor in com-
puter science at NUDT. His research interests
are performance analysis of high-performance
computing systems, parallel compilers, parallel
programming, and high-performance computing
applications.

