
Chen et al. / Front Inform Technol Electron Eng in press 1

Frontiers of Information Technology & Electronic Engineering

www.jzus.zju.edu.cn; engineering.cae.cn; www.springerlink.com

ISSN 2095-9184 (print); ISSN 2095-9230 (online)

E-mail: jzus@zju.edu.cn

FlowDNN: a physics-informeddeep neural network for

fast and accurate flowprediction∗

Donglin CHEN§†1, Xiang GAO§†1,2, Chuanfu XU†‡1,2, Siqi WANG1,2,

Shizhao CHEN1, Jianbin FANG1, Zheng WANG3

1College of Computer, National University of Defense Technology, Changsha 410073, China

2State Key Laboratory of High Performance Computing, National University of Defense Technology,

Changsha 410073, China

3School of Computing, University of Leeds, United Kingdom

†E-mail: chendonglin14@nudt.edu.cn; gaoxiang12@nudt.edu.cn; xuchuanfu@nudt.edu.cn

Received Aug. 28, 2020; Revision accepted May 4, 2021; Crosschecked

Abstract: For flow-related design optimization problems, e.g., aircraft and automobile aerodynamic design, com-

putational fluid dynamics (CFD) simulations are commonly used to predict flow fields and analyze performance.

While important, CFD simulations are a resource-demanding and time-consuming iterative process. The expensive

simulation overhead limits the opportunities for large design space exploration and prevents interactive design. In

this paper, we propose FlowDNN, a novel deep neural network (DNN) to efficiently learn flow representations

from CFD results. FlowDNN saves computational time by directly predicting the expected flow fields based on

given flow conditions and geometry shapes. FlowDNN is the first DNN that incorporates the underlying physical

conservation laws of fluid dynamics with a carefully designed attention mechanism for steady flow prediction. This

approach not only improves the prediction accuracy but also preserves the physical consistency of the predicted flow

fields, which is essential for CFD. Various metrics are derived to evaluate FlowDNN with respect to the whole flow

fields or regions of interest (RoI) (e.g., boundary layers where flow quantities change rapidly). Experiments show

that FlowDNN significantly outperforms alternative methods with faster inference time and more accurate results.

It reduces the turnaround time of generating flow data by more than 14 000× compared with a state-of-the-art

GPU-accelerated parallel CFD solver, while keeping the prediction error under 5%.

Key words: Deep neural network; Flow prediction performance; Attention mechanism; Physics-informed loss

https://doi.org/10.1631/FITEE.2000435 CLC number: TP391

1 Introduction

Fast and accurate determination of flow fields

and performance is critical for flow-related design

§ These authors have contributed equally to this work
‡ Corresponding author
* Project supported by the National Natural Science Founda-

tion of China (Nos. 61772542 and 61972408) and the Founda-

tion of State Key Laboratory of High Performance Computing

(Nos. 201901-11 and 202001-03)

ORCID: Donglin CHEN, https://orcid.org/0000-0002-5650-

5927

c© Zhejiang University Press 2021

and optimization. The focus of our work is the analy-

sis of incompressible steady flow, which is common in

many industrial engineering applications such as au-

tomobiles, the environment, and architecture. Com-

putational fluid dynamics (CFD) simulations are a

vital methodology for analyzing and predicting flow

fields and performance. Traditionally, CFD meth-

ods discretize governing equations of fluid dynamics

e.g., Navier-Stokes equations (Constantin and Foias,

1988) into a set of large-scale linear equations and

then solve iteratively (Blazek, 2015). While pro-

unedited

www.jzus.zju.edu.cn
engineering.cae.cn
www.springerlink.com


2 Chen et al. / Front Inform Technol Electron Eng in press

ducing highly-accurate results, CFD simulations are

known for their high computational cost, memory us-

age, and running times. This expensive simulation

overhead inevitably prolongs the design process, in-

creasing the cost, and hampering exhaustive design

space exploration and interactive design. This is a

particular problem in the early design stages where

designers would like to quickly estimate the potential

benefits of numerous design choices.

Recent studies have taken a data-driven,

supervised-learning-based approach to fast approx-

imation of flow fields and performance by lever-

aging deep neural networks (DNNs) (Ronneberger

et al., 2015; Guo et al., 2016; Thuerey et al., 2020).

Such approaches work by learning, offline, a DNN

from empirical information produced by a full-order

CFD solver. The learned model can then be used

to solve new, unseen flow problems, by taking as

input a representation of the flow conditions and

geometric shapes (e.g., usually projected as a 2D

matrix that can be visualized as an artificial im-

age like other DNN-based image processing appli-

cations), and predicting a matrix of the flow fields or

performance metrics (e.g., aerodynamic coefficients).

By employing a model inference to substitute for the

many computational iterations that a CFD solver

entails, predictive modeling can essentially decrease

the turnaround time of generating flow data.

While promising, the field of DNN-based flow

approximation is still in its infancy. Existing ap-

proaches simply leverage established statistical mod-

els developed in the field of image processing. They

have a fundamental flaw because they are not aware

of the underlying physical principles of fluid flows.

Unlike photo images, flow field images are visual-

izations of CFD numerical simulations that must

satisfy the fundamental physical laws like mass and

momentum conservation. Existing statistical-based

flow models are trained to minimize the mean square

errors (MSE) of the prediction results, but a predic-

tion with a low MSE does not guarantee the preser-

vation of physical laws. As a result, prior methods

often produce physically unsound (and thus unus-

able) data, which in turn discourage the adoption

of the technique. Some of the most recent stud-

ies have attempted to incorporate knowledge of the

physical system into deep learning (DL) (Geneva and

Zabaras, 2019; Wang et al., 2020). These methods

are tuned for modeling turbulence simulations and

the model architectures are tightly coupled with cer-

tain simulation methods. As a result, they do not

generalize to steady flow prediction and other sim-

ulation methods. As we show later in this paper,

existing approaches give large prediction errors in

steady flow simulation scenarios.

In addition to ignoring the physical laws, prior

work also fails to capitalize on the optimization op-

portunities of CFD workloads to improve prediction

accuracy. Specifically, for flow field prediction, we

want to direct the model to pay attention to regions

like boundary layers, because CFD users are more

interested in these complex regions with sharp gra-

dients. This is different from classical image process-

ing tasks, like object recognition, in which we want

the model to pay more attention to the location and

size of a target. Because prior DNN-based flow ap-

proximation methods simply adapt existing models

developed for standard image processing, they are

not tuned for CFD workloads and thus miss massive

optimization opportunities. Moreover, evaluations

for accuracy and physical characteristics of predicted

flow fields are often deficient or not comprehensive

in these emerging DNN-based flow prediction meth-

ods, making no distinction for the whole flow field or

a specific region of interest (e.g., boundary layers).

In this paper, we propose FlowDNN, a physics-

informed deep convolutional neural network with

attention mechanisms and network pruning for

highly accurate and fast steady flow prediction.

FlowDNN is designed to produce predictions that

obey the physical laws and use the CFD workload

characteristics to improve the quality and accuracy

of flow predictions. Unlike prior work in Wang et al.

(2020), FlowDNN is not closely linked to a spe-

cific simulation method and can be applied to a

wide range of simulation algorithms. To preserve

the laws of conservation of mass and momentum

of fluid dynamics, FlowDNN incorporates a novel

physical loss function. This novel loss function al-

lows FlowDNN to dramatically enhance prediction

accuracy while meeting the physical consistency of

the predicted flow fields. To leverage the domain

characteristics of CFD simulations, FlowDNN em-

ploys two new attention mechanisms to better ex-

tract knowledge from areas with sharp gradients.

We apply FlowDNN to a real-life flow dataset

and derive various metrics for the whole flow fields

or specific regions of interest (RoI) to evaluate the

unedited



Chen et al. / Front Inform Technol Electron Eng in press 3

accuracy and physical consistency of FlowDNN

prediction. Compared with three state-of-the-art

deep-learning-based CFD approximation methods,

our approach significantly outperforms competitive

methods with faster prediction time and lower pre-

diction error, setting a new state-of-the-art for

steady flow prediction. When compared to a state-

of-the-art GPU-accelerated parallel CFD solver, our

approach speeds up the simulation time by orders of

magnitude (more than 1400×). The key contribu-

tion of this paper is a general DNN for fast steady

flow simulations that can preserve physical princi-

ples. Our approach not only delivers fast and more

accurate simulation predictions, but also ensures the

prediction outcomes obey desirable physical charac-

teristics, filling the gap in learning-based steady flow

prediction.

2 Related work

2.1 Data-driven flow fields modeling

Data-driven methods have been used to accel-

erate aerodynamic simulations. Early work in the

areas adopts classical machine learning methods like

polynomial regression, support vector machines, and

artificial neural networks (Daberkow and Mavris,

1998; Balabanov et al., 1999; Ahmed and Qin, 2009;

Raissi et al., 2017). These strategies work in small-

scale settings but cannot scale to the whole flow field.

In recent years, efforts have been devoted to

applying DL to fluid dynamics. For example, the

works presented in Ling et al. (2016) and Geneva and

Zabaras (2019) constructed customized neural net-

works for turbulence modeling. Wang et al. (2020)

presented a novel hybrid DL model that unifies rep-

resentation learning and turbulence simulation tech-

niques, achieving improvement in both the predic-

tion error and desired physical quantities. How-

ever, these works target turbulence modeling and are

tightly coupled to a specific simulation algorithm.

Guo et al. (2016) and Bhatnagar et al. (2019) were

among the first attempts at predicting steady flow

fields, but their models do not guarantee the pre-

diction outcome will obey the fundamental physical

laws. For the prediction of unsteady flow, Lee and

You (2019) predicted the flow fields over a circu-

lar cylinder utilizing diverse DL networks to refine

both spatial and temporal features of the input flow

field. The work in Thuerey et al. (2020) focused on

investigating the accuracy of a modernized U-Net

model for steady flow field prediction, but the model

lacks physical constraints. To assess the capabilities

of neural networks to predict temporally evolving

turbulent flows, Srinivasan et al. (2019) proposed

two types of neural networks (multi-layer percep-

tron (MLP) and long short-term memory (LSTM))

to predict turbulent shear flows, and the LSTM led to

excellent results. To further reduce the amount data

and time required for training, Guastoni et al. (2020)

assessed the feasibility of performing transfer learn-

ing for the FCN model between different Reynolds

numbers. The results show great potential to ex-

ploit initial training in a certain flow condition and

transfer this knowledge to another condition. This

paper presents the first generalized prediction frame-

work for steady flow simulations, which incorporates

physical principles in the design, training, and in-

ference of the model. Our work extends the U-Net

architecture to model complex flow datasets.

2.2 Image-to-image mapping

Our work converts the flow field prediction prob-

lem to an image-to-image regression. It employs

DNN models to find the right mapping from given

inputs to the expected simulation outcomes based

on the assigned tasks. There is an extensive body

of work on image-to-image processing tasks, includ-

ing image segmentation (Long et al., 2015; Ron-

neberger et al., 2015; Zhou et al., 2018) and im-

age translation (Isola et al., 2017; Kim et al., 2017;

Zhu et al., 2017; Amodio and Krishnaswamy, 2019).

Prior works in these areas are mainly concerned with

medical or natural images from an unknown physi-

cal process and do not incorporate physical princi-

ples to guide the network training. The flow predic-

tion problem targeted in this work is different from

the conventional image-to-image translation task be-

cause the flow data are generated by solving specific

governing equations and must satisfy the physical

laws. Our work contributes by introducing a novel

physical loss function to ensure the physical consis-

tency of the predictions.

unedited



4 Chen et al. / Front Inform Technol Electron Eng in press

3 Our approach

3.1 Problem definition

In this paper, we mainly train and test our DNN

model using steady flow data and problems. Our

model can also be evaluated with more complicated

flow problems in the future. Steady flows are very

common in many industrial applications when deal-

ing with low-speed flow motion, where the fluid prop-

erties at a point in the system do not change over

time. In many situations, such as the flow condition

set in this paper, the changes in pressure and tem-

perature are sufficiently small so that the changes

in density are negligible. In this case, the flow can

be modeled as an incompressible flow (Constantin

and Foias, 1988). For 2D incompressible steady sit-

uations, the macroscopic governing equation can be

expressed as follows:

∂u

∂x
+

∂v

∂y
= 0 (1)

∂(uu)

∂x
+

∂ (uv)

∂y
=
∂τxx

∂x
+
∂τyx

∂y
−
∂p

∂x
(2)

∂(vu)

∂x
+

∂ (vv)

∂y
=
∂τxy

∂x
+
∂τyy

∂y
−
∂p

∂y
(3)

ein +
u2 + v2

2
= e (4)

where Eq. (1) defines the conservation of mass,

Eqs. (2) and (3) define the conservation of momen-

tum, and Eq. (4) comes from the conservation of

energy. More specifically, u and v stand for the pre-

dicted flow components. τxx, τyx, τxy, τyy are the

components of the viscous stress tensor, p stands for

the pressure, ein is the internal energy per unit mass,

and e is the total energy per unit mass. The physical

loss function presented in this work is derived from

the first three equations, but the effect of pressure p

is omitted. Because the proposed FlowDNN model

currently only predicts velocity vectors for steady

flows, the input data and the training dataset do not

include pressure fields. The solver implemented to

generate the ground-truth flow fields is based on the

Lattice Boltzmann method (LBM). The LBM con-

siders the macroscopic motion of the fluid as the aver-

age result of the microscopic motion of the particles,

where the microscopic motion is based on molecular

kinematic theory and statistical mechanics, and its

particle distribution function satisfies the Boltzmann

equation, which is more basic than Eqs. (1)–(4). The

LBM solver has many advantages. For example, it

can directly solve the flow fields on Cartesian grids,

and the algorithm is parallel, which enables us to ef-

ficiently simulate many training samples on parallel

computers (Li et al., 2016).

In this work, we apply our techniques to the

2D velocity simulation, but our approach is equally

applicable to other fluid flows, including 3D steady

flow simulations.

3.2 Data representation

To predict flow fields over different objects with

deep networks, we first need to have an appropriate

way to represent the object’s geometric and domain

boundaries. In this paper, we use LBM simulation

results as our training CFD data for deep networks

and divide fluid domains into Cartesian grids. For

each lattice cell of the grid, there is an identifier to

define whether it is the solid part of the fluid domain,

and macroscopic physical quantities of the flow field

simulated using the LBM are stored in the cell center.

As shown in Fig. 1, the blue cells are those solid parts

that represent the geometry of the 2D illustrated

airplane. This image-like array storage inspires us

to use artificial images to represent flow fields and

boundaries, and transform the flow field prediction

into an image-to-image regression problem.

Geometry Cartesian grid Artificial image

Fig. 1 Converting a 2D domain boundary to a Carte-

sian grid to generate a matrix input for our model

In this work, we use a binary representation to

characterize artificial input images and recognize ob-

ject boundaries in fluid domains. In Fig. 1, pixels

with value 1 indicate the object boundaries. Other

pixels with value 0 demonstrate the fluid domain,

and the corresponding pixels of the artificial output

images represent the approximation of steady flow

quantities after end-to-end learning.

With this kind of data representation, we can

express different flow field quantities as artificial im-

ages. For example, a 2D velocity field can be ex-

unedited



Chen et al. / Front Inform Technol Electron Eng in press 5

pressed as an image with two channels indicating the

velocity components in the x and y direction respec-

tively, and this representation can be easily extended

to 3D problems. Our methods are extensible to deal

with training data generated from CFD solvers using

structured/unstructured grids (Farrashkhalvat and

Miles, 2003), because we can map the domain bound-

aries and ground truth flow fields onto a Cartesian

grid.

3.3 Network architecture

Fig. 2 illustrates the overall architecture of

FlowDNN. Our model takes input as a matrix that

describes a 2D geometry domain (size of 128 × 256

in this work) of the target object. To generate the

input matrix, we first divide the fluid domains into

Cartesian grids from which we map the input fluid

domain image to a matrix of 0 and 1. This pro-

cess is illustrated in Fig. 1. Our model predicts the

steady flows around the object given an artificial im-

age that represents flow fields and boundaries. The

model produces two matrices of size 128× 256 with

numerical values, where a matrix represents the ve-

locity field for the x or the y direction.

At the core of FlowDNN is a U-Net (Ron-

neberger et al., 2015) architecture for steady flow

prediction around arbitrary objects. U-Net was tra-

ditionally used in image segmentation to determine

the area to which a pixel belongs. In this work, we

extend U-Net to predict flow quantities with physical

consistency for each pixel. This is achieved by using

a physical loss function to constrain the training pro-

cess (Section 3.4). Unlike classical U-Net for image

processing that uses a pooling layer for downsam-

pling, we adopt a transposed convolutional kernel

with a stride of 2 for downsampling. This allows

the network to adjust the filter weights used for each

pixel to enable a more accurate prediction on the

pixel level.

FlowDNN has a typical U-shaped structure

and mainly comprises two parts as shown in Fig. 2:

the left part includes 7 encoder blocks and the right

part has 7 decoder blocks. Each encoder block is

followed by a convolutional layer, an activation unit,

and a batch normalization layer. The convolutional

kernels have a size of 4 × 4, except for the one in

the last encoder block because the size of its input

feature map is only 1× 2. For each decoder block in

the decoder, we set up an upsampling layer followed

by an activation unit.

The encoder and the decoder are connected

through a skip architecture, which concatenates all

down-sampled feature maps from the encoder blocks

to the corresponding maps in decoder blocks and

doubles the number of channels. We also extend

the canonical U-Net architecture by introducing at-

tention modules (AM) (a channel attention module

(CAM) at the bottom and six spatial attention mod-

ules (SAM) at all other skip connections). These AM

help the skip architecture integrate the fine-grained

and coarse-grained information more effectively.

3.4 Physical loss functions

Our approach explicitly provides prior physical

conservation law information to the network to en-

able it to extract features that satisfy the physical

Input

128 256 1

64 128 16

32 64 32

16 32 16

8 16 64

4 8 64

2 4 256

1 2 256

SAM

SAM

SAM

SAM

SAM

SAM

CAM

1 2 256

2 4 512

4 8 128

8 16 128

16 32 64

32 64 64

64 128 32

128 256 2

Output

Physical loss function

Ground truth

Velocity x

Velocity y

Prediction

Convolution

Tensor addition

Transconvolution

Skip connections

Domain boundary

Fig. 2 The architecture of FlowDNN

The black arrows denote convolutional layers and transposed convolutional layers, while the brown arrows indicate the skip
connections with AM. The artificial image of the domain boundary is passed to the network as input. The output is the
prediction of a 2D velocity field and is compared to the ground truth data with physical loss function. AM, attention modules

unedited



6 Chen et al. / Front Inform Technol Electron Eng in press

consistency. To this end, we design two loss func-

tions, Lmass and Lmomentum, for the laws of conser-

vation of mass and momentum, and combine them

with the traditional L1 loss function to formulate the

physical loss function, Lphysical, as

Lphysical = α1L1 + α2Lmass + α3Lmomentum, (5)

where the weights (α1, α2, and α3) of Lphysical are

set to ensure equal contribution of the three terms

(L1, Lmass, and Lmomentum) to the total loss. For 2D

geometries, L1 and Lmass are defined as follows:

L1 =
1

2mnxny

m
∑

l=1

nx
∑

i=1

ny
∑

j=1

(∣

∣ul
ij − ul

ij

∣

∣+
∣

∣vlij − vlij
∣

∣

)

,

(6)

Lmass =
1

m (nx − 2) (ny − 2)

m
∑

l=1

nx−1
∑

i=2

ny−1
∑

j=2
∣

∣

∣

∣

∣

(

∂u

∂x
+

∂v

∂y

)l

ij

−

(

∂u

∂x
+

∂v

∂y

)l

ij

∣

∣

∣

∣

∣

,

(7)

Lmomentum is defined at the bottom of this page,

where m is the batch size and l denotes a certain

sample, and nx and ny are the numbers of cells (pix-

els) along the x and y directions respectively. u and

v are the flow components of the x and y directions

respectively, and u and v stand for the predicted

flow components. Lmass is the loss function based on

the law of conservation of mass, which evaluates the

difference between predicted and ground-truth mass

flowing through each cell (the density is typically as-

sumed to be constant for an incompressible steady

flow). Lmomentum is the loss function based on the

law of conservation of momentum, which compares

the difference of momentum in the x and y directions.

Re represents the fixed Reynolds number.1 Here the

first-order and second-order partial derivatives are

calculated using the first-order and second-order cen-

tral difference schemes, respectively (Blazek, 2015).

Taking variable u as an example, we have

∂ui,j

∂x
=

1

2
(ui+1,j − ui−1,j),

∂2ui,j

∂x2
= ui+1,j − 2ui,j + ui−1,j .

(9)

It should be noted that we remove both

the ground truth and predicted pressure terms in

Lmomentum, so the momentum equation is still con-

served (if the predicted velocities equal the ground

truth, Lmomentum will be 0). In future work, it would

be worth trying to use the automatic differentia-

tion technique for the physical loss function, like the

physics-informed neural networks proposed by Raissi

et al. (2019).

3.5 Channel and spatial attention modules

As a departure from all prior work on DL-based

CFD approximation, we introduce attention mecha-

nisms to our learning framework. This is motivated

by the observation that some RoI in fluid flows often

contain more important and complicated informa-

tion than others as flow quantities change rapidly.

To achieve accurate predictions in these areas, we

introduce the self-attention mechanism (Hu et al.,

2018; Park et al., 2018) to direct the networks to fo-

cus on RoI areas. Specifically, FlowDNN adopts

two lightweight AM, the CAM and SAM, which are

extended from Woo et al. (2018). The CAM and

SAM can extract the discriminative features from

1The fluid condition is typically quantified by a dimen-
sionless Reynolds number (Blazek, 2015) that describes the
ratio of inertial forces to viscous forces in a flowing fluid.

Lmomentum

=
1

m (nx − 2) (ny − 2)

m
∑

l=1

nx−1
∑

i=2

ny−1
∑

j=2

{
∣

∣

∣

∣

∣

[

(

∂(uu)

∂x
+

∂ (uv)

∂y

)l

ij

−
1

Re

(

∂2u

∂x2
+

∂2u

∂y2

)l

ij

]

−

[

(

∂(uu)

∂x
+

∂ (uv)

∂y

)l

ij

−
1

Re

(

∂2u

∂x2
+

∂2u

∂y2

)l

ij

]
∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

[

(

∂(vu)

∂x
+

∂ (vv)

∂y

)l

ij

−
1

Re

(

∂2v

∂x2
+

∂2v

∂y2

)l

ij

]

−

[

(

∂(vu)

∂x
+

∂ (vv)

∂y

)l

ij

−
1

Re

(

∂2v

∂x2
+

∂2v

∂y2

)l

ij

]∣

∣

∣

∣

∣

}

.

(8)

unedited



Chen et al. / Front Inform Technol Electron Eng in press 7

the channel and the spatial domains respectively to

facilitate FlowDNN by learning which information

(e.g., boundary information) to emphasize. The fol-

lowing equations show how these two AM work:

Fc = Mc(F )⊗ F, (10)

Fs = Ms (F )⊗ F, (11)

Mc(F ) = σ(MLP(GAP(F )) +MLP(GMP(F ))),

(12)

Ms(F ) = σ (Conv (GAPc (F )⊕GMPc (F ))) , (13)

where ⊗ and ⊕ denote element-wise multiplica-

tion and channel-wise concatenation, respectively.

F ∈ RC×H×W indicates the input feature map,

while Mc ∈ RC×1×1 and Ms ∈ R1×H×W represent

the CAM and SAM, respectively. The intermedi-

ate results Mc(F ) and Ms (F ) need ⊗ with F itself,

matching with the dimension of the original input

and obtaining the outputs Fc and Fs. Eqs. (12)

and (13) show the details of operations in the CAM

and SAM. The CAM first creates a global average

pooling (GAP) and a global max pooling (GMP)

along the spatial axis on the input feature map, pro-

ducing a channel vector. The vector is then sent to

a MLP with one hidden layer to estimate attention

across channels. The SAM also includes global pool-

ing operations, but they are performed along the

channel axis, GAPc and GMPc. The results from

GAPc and GMPc are concatenated and sent to a

convolution operation to generate a spatial attention

map with one channel. Both the CAM and SAM are

followed by the sigmoid function σ for normalization.

3.6 Network pruning

Our work also applies network pruning to speed

up the inference time of a trained model. Network

pruning (Liu et al., 2019) is also used to verify that

the improvement of FlowDNN is not simply due to

the introduction of more learning parameters.

To this end, we use a Taylor expansion-based

criterion from the work of Molchanov et al. (2017)

to rank the neurons in the network and iteratively

remove the least important one. Pruning is per-

formed iteratively. We first train the network un-

til it reaches the convergence criteria. We then

evaluate the importance of neurons using the Tay-

lor expansion-based criterion and remove the least

important neuron. Next, we fine-tune the pruned

model and re-evaluate the neurons’ importance to re-

move the next least important neuron until reaching

the target trade-off between accuracy and efficiency.

We note that pruning is done offline and is a one-off

cost.

4 Experiments setup

4.1 Data preparation

We evaluate FlowDNN by applying it to 2D

flow field velocity predictions. Our training dataset

includes 3000 samples that are a combination of sim-

ple 2D geometric primitives of ovals and rectangles,

with different positions and sizes. Our validation

and test datasets include 22 and 44 types of car pro-

totypes, respectively. Fig. 3 illustrates some of our

training and testing samples. We use the parallel

GPU implementation of the LBM (Ernst, 1981) pro-

vided by an open-source CFD solver2 to generate

our training CFD data (i.e., the ground-truth veloc-

ities after performing CFD simulations on the input

data). We choose LBM because it is a widely used

CFD simulation method and can be parallelized to

run on the GPU (an NVIDIA Tesla V100 GPU in

our evaluation). For LBM simulations, the Reynolds

number is set to 400, and the airflow blows toward

the 2D object parallel to the x direction. The Carte-

sian grid size, as well as the input artificial image size,

are both 256×128. For flow fields simulated by CFD

methods like finite volume and spectral method, an

extra step is required to first interpolate the result

onto a Cartesian grid.

4.2 Implementation and training details

Our models are built on an NVIDIA Tesla V100

GPU with PyTorch 1.1.0. We train the model with

the adaptive moment estimation (Adam) optimizer.

To converge to stable results without overfitting, the

training proceeds up to 400 epochs. Table 1 shows

the hyper-parameter settings and tuning range. We

set the initial learning rate (Lr) at 4 × 10−4 and

decay it every 25 epochs by a factor of 0.9. The

batch size is set to 16. Note that transposed con-

volutions may cause checkerboard artifacts (Odena

et al., 2016). Thus, we set the kernel size divisible by

the stride to avoid this drawback. For each pruning

step in network pruning, we only remove the lowest

2 http://mechsys.nongnu.org

unedited



8 Chen et al. / Front Inform Technol Electron Eng in press

(a)

(b)

Fig. 3 Visualization examples from our training (a)

and testing datasets (b)

Table 1 Hyper-parameter setting

Parameter Optimum Tuning range

Lr 4×10−4
10

−5 – 10
−3

Lr decay interval 25 20 – 50
Batch size 16 4 – 64
Filter size 4 2 – 8
Pruning number 1 1 – 5
Weight of Lphysical (1, 5, 25) / 3 -

Pruning number indicates the number of filters for
each pruning step; Lr, learning rate

ranking neuron, namely the filter, from the network

because pruning too much at each step may lead to

a damaged network. We then fine-tune the pruned

network by training for 40 epochs to converge to a

stable result. As for activation functions, we use the

conventional rectified linear units (ReLU) function,

which performs better than the exponential linear

units (ELUs) function as recommended in Hamdan

et al. (2019). For the weights of our physical loss

function, we first keep α1, the distribution of L1 loss,

equal to 1. Then α2 and α3 are set to make the items

contribute equally to the total loss. Because there

are three components in Lphysical, we divide all three

parameters by 3.

4.3 Baselines

We compare our model with three state-of-the-

art baselines for steady flow fields prediction:

1. C-Net (Guo et al., 2016): An encoder-decoder

model with 3 convolutional layers and 3 deconvolu-

tional layers, providing lightweight interior and ex-

terior flow performance feedback.

2. T-Net (Thuerey et al., 2020): A modern-

ized U-Net structure aiming at the inference of

pressure and velocity distributions for Reynolds-

averaged Navier-Stokes solutions.

3. U-Net (Ronneberger et al., 2015): Conven-

tional convolutional neural networks originally de-

veloped for image segmentation, also popularly used

for flow fields prediction.

4.4 Evaluation metrics

We use the mean relative error (MRE) to evalu-

ate the overall prediction accuracy for all flow fields.

Because CFD users often pay particular attention to

specific regions, we also evaluate the MRE for RoIs,

which we call MRERoI. For example, Fig. 4 shows an

institution of RoI defined by the red box, including

the area of the car and the boundary layers in the

experiments. Note that the box is not formalized,

and the size and location of the box will adaptively

change to totally encompass the object geometry in

the flow field. Because it is important to ensure the

predictions are physically sound, we define MREma

and MREmo for the laws of conservation of mass and

momentum, respectively. These metrics are defined

as follows:

1. MRE: This is computed using the pre-

dicted velocity and the ground truth for the

whole 2D flow field of all the N test samples:
1
N

N
∑

l=1





nx
∑

i=1

ny
∑

j=1

(∣

∣

∣ul
ij − ul

ij

∣

∣

∣ +

∣

∣

∣vlij − vl
ij

∣

∣

∣

)

/
nx
∑

i=1

ny
∑

j=1

(∣

∣

∣ul
ij

∣

∣

∣ +

∣

∣

∣vlij

∣

∣

∣

)





2. MRERoI: This is computed as

1
N

N
∑

l=1

(

ns
∑

i=1

(∣

∣

∣ul
i − ul

i

∣

∣

∣ +

∣

∣

∣vli − vli

∣

∣

∣

)

/
ns
∑

i=1

(∣

∣

∣ul
i

∣

∣

∣ +

∣

∣

∣vli

∣

∣

∣

)

)

, where ns is

the number of cells in the RoI.

3. MREma and MREmo: These are calculated

as 1
N

N
∑

l=1





nx
∑

i=1

ny
∑

j=1

∣

∣

∣glij − glij

∣

∣

∣/
nx
∑

i=1

ny
∑

j=1

∣

∣

∣glij

∣

∣

∣



, where g and g are

the net change of mass or momentum on each lattice

between ground truths and predictions, respectively.

unedited



Chen et al. / Front Inform Technol Electron Eng in press 9

Fig. 4 An example of RoI defined by the red box

(RoI: regions of interest)

5 Experimental results

5.1 Overall results

Table 2 compares the baselines to FlowDNN

in terms of accuracy, the inference runtime, and the

parameter size. Without any further optimization,

FlowDNN with our physical loss function greatly

outperforms its counterparts for MRE, MREma and

MREmo. We also present the MRE for the bound-

ary domain (MRERoI), which is a specific region of

interest for CFD experts in our test. Our attention

mechanisms are important for improving accuracy at

the boundary layer; without AM, FlowDNN gives

a higher MRERoI than U-Net. We also observe that

there is a slight increase in the runtime when intro-

ducing the attention mechanism, but the overhead is

negligible (< 1 ms).

The last row of Table 2 shows the result of

network pruning (details in Section 5.5). We re-

duce the prediction time to 3.62 ms and remove

almost half of the parameters (from 13.74 M to

7.40 M), validating the effectiveness of our method

compared to the three baselines with more param-

eters (32.96 M, 180.25 M and 7.45 M). Interest-

ingly, pruning actually improves network perfor-

mance. We believe this is because having fewer pa-

rameters reduces the chance of overfitting (Frankle

and Carbin, 2019). Overall, the full implementa-

tion of FlowDNN greatly improves the accuracy

at lower inference runtime compared to alternative

methods. Because the weight parameters of the neu-

ral network are different after each training, we train

each neural network 3 times and compare the pre-

dicted values. The prediction results show that the

difference between each trained network is almost

negligible, so we use the average value as the final

result.

We further compare the feedback speed between

our DL method and the traditional LBM solver on

the GPU platform. As we can see from Table 2,

because the batch size is set to 16, FlowDNN can

predict the fluid velocity fields for 16 different pro-

totypes in less than 4 ms, whereas the LBM solver

needs about 3.3 seconds to simulate the result for

only one prototype, indicating a reduction of run-

time by > 14.5 k times.

Table 3 quantifies the differences of some of the

model prediction visualization samples against the

full-order CFD simulation results, which indicates

that our predictions are visually closer to the results

given by the full-order CFD solver.

For more performance details on four metrics of

all models, Fig. 5 describes the statistical distribu-

tion of four evaluation metrics for different models

on the test dataset. The three baseline models per-

form well on some specific samples, but FlowDNN

can achieve high predictive performance in almost all

cases.

5.2 Loss function

Fig. 6 reports the impact of L1 and Lphysical

on FlowDNN without AM and network pruning.

Fig. 6a compares the two loss functions for MRE,

MRERoI, MREma and MREmo on the test dataset.

In addtion to the improvement in the accuracy of

all flow fields, Lphysical reduces the prediction er-

ror dramatically at the complicated boundary layer:

MRERoI drops from 42.23% to 23.56%. Moreover,

Lphysical can provide predictions with higher phys-

ical consistency compared to the conventional L1

with no physical constraints. Fig. 6b visualizes the

absolute error for mass (∆mass) and momentum

(∆momentum) between the ground truth and pre-

dictions using different loss functions. Compared to

L1, the predictions of Lphysical contain more fine fea-

tures and are more consistent with the ground truth

in the mass and momentum change-of-flow quanti-

ties.

5.3 Attention mechanisms

Fig. 7a shows the change of the validation loss

for FlowDNN with and without AM. We can see

that the model with AM quickly converges within

50 epochs and achieves a smaller overall validation

loss. The results suggest that the AM can boost

FlowDNN in accuracy and training efficiency.

The violin diagram in Fig. 7b shows the distri-

unedited



10 Chen et al. / Front Inform Technol Electron Eng in press

Table 2 Comparing FlowDNNwith different baseline models

Method MRE MRERoI MREma MREmo Runtime (ms) Parameters (Mb)

LBM - - - - 3300×16 -
C-Net 14.31% 30.99% 37.44% 45.60% 9.29 180.25
T-Net 24.65% 59.71% 79.09% 82.38% 8.47 7.45
U-Net 14.74% 13.14% 30.78% 44.42% 16.15 32.96
FlowDNN 7.91% 23.56% 18.28% 22.46% 3.52 13.70
FlowDNN w/ AM 5.34% 9.16% 12.34% 15.69% 4.51 13.74
FlowDNN w/ AM and P 4.77% 8.87% 12.14% 14.63% 3.62 7.40

All FlowDNNmodels are trained using the physical loss function with AM and network pruning (P). AM, attention
modules; LBM, Lattice Boltzmann method; MRE, mean relative error; RoI, regions of interest

Table 3 The difference of baselines and FlowDNN compared with ground truth

U-Net C-Net T-Net FlowDNN FlowDNN

AP

Racing

Saloon

Jeep

Pickup

Bus

U-Net C-Net T-Net FlowDNN FlowDNN AP

U-Net C-Net T-Net FlowDNN FlowDNN AP

U-Net C-Net T-Net FlowDNN FlowDNN AP

U-Net C-Net T-Net FlowDNN FlowDNN AP

0

0.1

0.2

0.3

0.4

0.5

0.6

M
R

E

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

M
R

E
m

a

0

0.5

1.0

1.5

M
R

E
R

o
I

0

0.5

1.0

1.5

2.0

M
R

E
m

o

(a) (b)

(c) (d)

Fig. 5 The distribution for different models on the test dataset: (a) MRE; (b) MRERoI; (c) MREma; (d)MREmo

bution of MRERoI on the test dataset. Here, the

shape of the violin indicates the data distribution,

and the thick black line shows where half of the data

is located. The AM help reduce the MRERoI from

23.56% to 9.16%. This is because the CAM and SAM

can improve the ability of the networks in learning

boundary information by extracting more discrimi-

native features from the channel and spatial domain.

5.4 Activation function

Fig. 8a shows that the ReLU function, combined

with batch normalization, converges faster and deliv-

ers fewer errors than the ELU function on the val-

unedited



Chen et al. / Front Inform Technol Electron Eng in press 11

MRERoI MRE ma MRE moMRE
0

5

10

15

20

25

30

35

40

45

E
rr

o
r 

(%
)

L1

LPhysical

(a)

0.006

0.004

0.002

0

-0.002

-0.004

-0.006

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

Ground

truth

L1

LPhysical

mass momentum

(b)

Fig. 6 (a) Comparing MRE, MRERoI, MREma and

MREmo between L1 and Lphysical; (b) Comparing

∆mass and ∆momentum for different loss functions

idation dataset. Because the ELU function allows

the network to push the mean activation closer to

zero and thus helps normalization, we argue that the

relatively poor performance of the ELU function is

due to the repeated normalization. To demystify

this, we further experimented on the ELU function

without batch normalization. The results show that

the ReLU function still yields better performance in

terms of accuracy, although the ELU function with-

out batch normalization gains faster convergence and

more stable results than before. We can conclude

that batch normalization does not always boost the

performance of neural networks. We also did ad-

ditional experiments comparing the ReLU function

and its variants like the leaky ReLU and PReLU

functions. However, we found that differences be-

tween these variants were relatively small. Consider-

ing that the ReLU function can increase the sparsity

of the neural network and hence help network prun-

ing, we chose the ReLU as the activation function.

0

1

2

3

4

5

6
10

-3

0 50 100 150 200 250 300 350 400
Epoch

V
a
lid

a
ti
o
n
 l
o
s
s

FlowDNN

FlowDNN w/ AM

(a)

FlowDNN FlowDNN w/ AM

0

0.1

0.2

0.3

0.4

0.5
M

R
E

R
o
I

(b)

Fig. 7 (a) The validation loss with and without AM;

(b) The distribution of MRERoI with and without AM

on the test dataset (AM: attention modules; MRE:

mean relative error; RoI: regions of interest)

5.5 Network pruning

Fig. 8b shows how the model scores with net-

work pruning. MRE fluctuates up and down in a

small range when the number of pruned filters is less

than about 500. As pruning continues, the damage

to the network structure is beyond tolerance so the

prediction error rises sharply. Therefore, the model

achieving the smallest prediction error is determined

as the final predictive model.

6 Conclusions

We have presented FlowDNN, a novel DNN-

based framework for predicting steady flow fields.

FlowDNN is designed to speed up full-order CFD

simulations while preserving the physical conserva-

tion laws. Unlike prior work, FlowDNN employs

attention mechanisms to learn better from the

boundary layers. Experimental results show that gh

unedited



12 Chen et al. / Front Inform Technol Electron Eng in press

0

1

2

3

4

5

6
10

-3

0 50 100 150 200 250 300 350 400

Epoch

V
a
lid

a
ti
o
n
 l
o
s
s

ELU w/ BN

ELU w/o BN

ReLU w/BN

(a)

0 100 200 300 400 500 600 700
0.04

0.06

0.08

0.10

0.12

0.14

0.16

M
R

E

Number of pruned filters

Pruning model

FlowDNN w/ AM

(b)

Fig. 8 (a) The impact of ReLU and ELU activation

functions; (b) The MRE of velocity with and without

pruning (ELU: exponential linear unit; MRE: mean

relative error; ReLU: rectified linear units)

significantly outperforms prior CFD approximation

methods by delivering faster inference time and

more accurate prediction results. It speeds up a

GPU-accelerated CFD solver by more than 14000×.

Contributors

Donglin CHEN and Xiang GAO designed the research.

Siqi WANG and Shizhao CHEN processed the data. Chuanfu

XU drafted the manuscript. Jianbin FANG and Zheng

WANG helped organize the manuscript. Donglin CHEN and

Xiang GAO revised and finalized the paper.

Compliance with ethics guidelines

Donglin CHEN, Xiang GAO, Chuanfu XU, Siqi WANG,

Shizhao CHEN, Jianbin FANG, and Zheng WANG declare

that they have no conflict of interest.

References
Ahmed MYM, Qin N, 2009. Surrogate-based aerodynamic

design optimization: Use of surrogates in aerodynamic
design optimization. The Int Conf on Aerospace
Sciences & Aviation Technology, p.1–26.
https://doi.org/10.21608/ASAT.2009.23442

Amodio M, Krishnaswamy S, 2019. TraVeLGAN: image-
to-image translation by transformation vector learn-
ing. IEEE/CVF Conf on Computer Vision and
Pattern Recognition, p.8975–8984.
https://doi.org/10.1109/CVPR.2019.00919

Balabanov VO, Giunta AA, Golovidov O, et al., 1999. Rea-
sonable design space approach to response surface ap-
proximation. J Aircr, 36(1):308–315.
https://doi.org/10.2514/2.2438

Bhatnagar S, Afshar Y, Pan S, et al., 2019. Prediction
of aerodynamic flow fields using convolutional neural
networks. Comput Mech, 64(2):525–545.
https://doi.org/10.1007/s00466-019-01740-0

Blazek J, 2015. Computational Fluid Dynamics: Principles
and Applications. 3rd Ed. Butterworth-Heinemann,
Oxford, UK, p.466.

Constantin P, Foias C, 1988. Navier-stokes equations. The
University of Chicago Press, Chicago, IL, p.199.

Daberkow DD, Mavris DN, 1998. New approaches to con-
ceptual and preliminary aircraft design: a comparative
assessment of a neural network formulation and a re-
sponse surface methodology. World Aviation Congress
& Exposition, article 15.
https://doi.org/10.4271/985509

Ernst MH, 1981. Nonlinear model-Boltzmann equations and
exact solutions. Phys Rep, 78(1):1-171.
https://doi.org/10.1016/0370-1573(81)90002-8

Farrashkhalvat M, Miles JP, 2003. Basic Structured Grid
Generation: With an Introduction to Unstructured Grid
Generation. Elsevier, Amsterdam, Netherlands,
p.190–226.
https://doi.org/10.1016/B978-075065058-8/50008-3

Frankle J, Carbin M, 2019. The lottery ticket hypothesis:
finding sparse, trainable neural networks. ICLR.
https://arxiv.org/abs/1803.03635v5

Geneva N, Zabaras N, 2019. Quantifying model form un-
certainty in Reynolds-averaged turbulence models with
Bayesian deep neural networks. J Comput Phys,
383:125-147.
https://doi.org/10.1016/j.jcp.2019.01.021

Guastoni L, Guemes A, Ianiro A, et al., 2020. Convolutional-
network models to predict wall-bounded turbulence
from wall quantities.
https://arxiv.org/abs/2006.12483

Guo XX, Li W, Iorio F, 2016. Convolutional neural net-
works for steady flow approximation. Proc 22nd ACM
SIGKDD Int Conf on Knowledge Discovery and Data
Mining, p.481-490.
https://doi.org/10.1145/2939672.2939738

Hamdan MKA, Rover DT, Darr MJ, et al., 2019. Mass
estimation from images using deep neural network and
sparse ground truth.
http://arxiv.org/abs/1908.04387

Hu J, Shen L, Sun G, 2018. Squeeze-and-excitation net-
works. IEEE/CVF Conf on Computer Vision and
Pattern Recognition.
https://doi.org/10.1109/CVPR.2018.00745

unedited



Chen et al. / Front Inform Technol Electron Eng in press 13

Isola P, Zhu JY, Zhou TH, et al., 2017. Image-to-image
translation with conditional adversarial networks. IEEE
Conf on Computer Vision and Pattern Recognition.
https://doi.org/10.1109/CVPR.2017.632

Kim T, Cha M, Kim H, et al., 2017. Learning to dis-
cover cross-domain relations with generative adversar-
ial networks. Proc 34th Int Conf on Machine Learning,
p.1857–1865.

Lee S, You D, 2019. Data-driven prediction of unsteady flow
over a circular cylinder using deep learning. J Fluid

Mech, 879:217–254.
https://doi.org/10.1017/jfm.2019.700

Li DL, Xu CF, Wang YX, et al., 2016. Parallelizing and
optimizing large-scale 3D multi-phase flow simulations
on the tianhe-2 supercomputer. Concurr Comput,
28(5):1678–1692.
https://doi.org/10.1002/cpe.3717

Ling JL, Kurzawski A, Templeton J, 2016. Reynolds aver-
aged turbulence modelling using deep neural networks
with embedded invariance. J Fluid Mech, 807:155–166.
https://doi.org/10.1017/jfm.2016.615

Liu Z, Sun MJ, Zhou TH, et al., 2019. Rethinking the value
of network pruning.
https://arxiv.org/abs/1810.05270

Long J, Shelhamer E, Darrell T, 2015. Fully convolutional
networks for semantic segmentation. IEEE Conf
on Computer Vision and Pattern Recognition, p.3431–
3440.
https://doi.org/10.1109/CVPR.2015.7298965

Molchanov P, Tyree S, Karras T, et al., 2017. Pruning convo-
lutional neural networks for resource efficient inference.
Conf at ICLR.

Odena A, Dumoulin V, Olah C, 2016. Deconvolution and
checkerboard artifacts. Distill, 1(10):e3.
https://doi.org/10.23915/distill.00003

Park J, Woo S, Lee JY, et al., 2018. BAM: bottleneck
attention module.
https://arxiv.org/abs/1807.06514v1

Raissi M, Perdikaris P, Karniadakis GE, 2017. Physics
informed deep learning (part I): data-driven solutions
of nonlinear partial differential equations.
https://arxiv.org/abs/1711.10561

Raissi M, Perdikaris P, Karniadakis GE, 2019. Physics-
informed neural networks: a deep learning framework
for solving forward and inverse problems involving non-
linear partial differential equations. J Comput Phys,
378:686–707.
https://doi.org/10.1016/j.jcp.2018.10.045

Ronneberger O, Fischer P, Brox T, 2015. U-net: convolu-
tional networks for biomedical image segmentation.
In: Navab N, Hornegger J, Wells W, et al. (Eds.),
Medical Image Computing and Computer-Assisted
Intervention-MICCAI 2015. Springer, Cham, p.234–
241.
https://doi.org/10.1007/978-3-319-24574-4_28

Srinivasan PA, Guastoni L, Azizpour H, et al., 2019.
Predictions of turbulent shear flows using deep neural
networks. Phys Rev Fluids, 4:054603.
https://link.aps.org/doi/10.1103/PhysRevFluids.4.054603

Thuerey N, Weissenow K, Prantl L, et al., 2020. Deep
learning methods for Reynolds-averaged navierĺCstokes
simulations of airfoil flows. AIAA J, 58(1):25-36.

Wang R, Kashinath K, Mustafa M, et al., 2020. Towards
physics-informed deep learning for turbulent flow pre-
diction. Proc 26th ACM SIGKDD Int Conf on Knowl-
edge Discovery & Data Mining, p.1457–1466.
https://doi.org/10.1145/3394486.3403198

Woo S, Park J, Lee JY, et al., 2018. CBAM: convolutional
block attention module. In: Ferrari V, Hebert M,
Sminchisescu C, et al. (Eds.), Computer Vision ĺC
ECCV 2018. Springer, Cham, p.3–9.
https://doi.org/10.1007/978-3-030-01234-2_1

Zhou ZW, Siddiquee MMR, Tajbakhsh N, et al., 2018.
UNet++: a nested U-Net architecture for medical im-
age segmentation. 4th Int Workshop on Deep Learning
in Medical Image Analysis and Multimodal Learning for
Clinical Decision Support, p.3–11.
https://doi.org/10.1007/978-3-030-00889-5_1

Zhu JY, Park T, Isola P, et al., 2017. Unpaired image-
to-image translation using cycle-consistent adversarial
networks. IEEE Int Conf on Computer Vision, p.2242–
2251.
https://doi.org/10.1109/ICCV.2017.244

unedited


	Introduction
	Related work
	Data-driven flow fields modeling
	Image-to-image mapping

	Our approach
	Problem definition
	Data representation
	Network architecture
	Physical loss functions
	Channel and spatial attention modules
	Network pruning

	Experiments setup
	Data preparation
	Implementation and training details
	Baselines
	Evaluation metrics

	Experimental results
	Overall results
	Loss function
	Attention mechanisms
	Activation function
	Network pruning

	Conclusions



