
Characterizing OpenMP Synchronization
Implementations on ARMv8 Multi-Cores

Pengyu Wang§, Wanrong Gao§, Jianbin Fang∗, Chun Huang∗
College of Computer Science

National University of Defense Technology
{pengyu wang, gaowanrong, j.fang, chunhuang}@nudt.edu.cn

Zheng Wang
School of Computing

University of Leeds
z.wang5@leeds.ac.uk

Abstract—Synchronization operations like barriers are fre-
quently seen in parallel OpenMP programs, where an inefficient
implementation can severely limit the application performance.
While synchronization optimization has been heavily studied
on traditional x86 architectures, there is no consensus on how
synchronization can be best implemented on the ARMv8 multi-
core CPUs. This paper presents a study of OpenMP synchroniza-
tion implementation on two representative ARMv8 multi-core
architectures, Phytium 2000+ and ThunderX2, by considering
various OpenMP synchronization mechanisms offered by two
mainstreamed OpenMP compilers, GCC and LLVM. Our evalu-
ation compares the performance, overhead and scalability of both
compiler implementations. We show that there is no “one-fits-for-
all” synchronization mechanism, and the efficiency of a scheme
varies across hardware architectures and thread parallelism. We
then share our insights and discuss how OpenMP synchronization
operations can be better optimized on emerging ARMv8 multi-
cores, offering quantified results for future research directions.

Index Terms—OpenMP, Scalability, Synchronization, Perfor-
mance

I. INTRODUCTION

Synchronization primitives are an essential part of parallel
programming languages like OpenMP [1]. To avoid race
conditions and ensure correct execution, concurrently running
threads have to meet at specific synchronization points. Such
synchronization operations are often implemented using locks
or shared variables, for which all parallel processes sit idle to
wait for the slowest peer.

An inefficient synchronization implementation can severely
limit the application performance due to its overhead [2]. This
is because contention for obtaining the lock or shared value
and waiting delays can substantially degrade the performance
of parallel applications. Synchronization can also harm the
performance by increasing the bus traffic [3] or creating
memory “hot-spots” [4]. This problem worsens on modern
multi-cores where the growing number of processors means
the synchronization interval decreases when a larger number
of competing threads running on the system.

Synchronizations are required in a range of widely
used parallel programming patterns, including fork-join,
exclusive accessing and producer-consumers.

§Equal contribution
*Corresponding author

Most OpenMP parallel constructors’ implementation typically
inserts one or more synchronization points to avoid race
conditions among parallel running threads. In OpenMP, a
barrier like synchronization is used for fork-join type
of parallelism, including parallel and reduction region.
Similarly, a mutex lock can be used to ensure exclusive re-
source access in OpenMP. This synchronization mechanism is
often used together with a critical and atomic OpenMP
directives.

The synchronization implementation varies depending on
the OpenMP library vendors. For example, the GNU libgomp
OpenMP library used by GCC chooses to use a centralized
algorithm to implement the barrier, while LLVM adopts
a tree-based algorithm. Most of these implementations were
tuned on traditional x86 architectures and conventional multi-
processors [5], but it remains unclear whether the existing
implementations are still efficient on the emerging ARMv8
multi-cores. Given that ARMv8 based CPUs have become
a strong contender in the high-performance computing mar-
ket, it is interesting to know whether the implementation
choices of mainstream OpenMP compilers remain effective
on ARMv8 multi-cores. Having such information will inform
future OpenMP implementation in particular and synchroniza-
tion optimization in general on ARM HPC systems.

This paper studies OpenMP synchronization implementa-
tions on two representative ARMv8 multi-core processors,
Phytium 2000+ and ThunderX2. We investigate the per-
formance behaviours of both barrier-related synchronization
constructs (including explicit barrier constructs and im-
plicit barrier synchronization in work-sharing regions like
parallel for and reduction) and mutex-based syn-
chronization constructs (critical and atomic directives).
We use EPCC benchmark [6] to quantify the barrier overhead
of LLVM and GCC compilers. Our evaluation suggests that in
addition to the main synchronization overhead, other overhead
resulting from the multi-threading management and reduction
operations can also have a significant impact on the application
performance.

We empirically demonstrate that there is no “one-size-fits-
all” synchronization implementation because the efficiency of
OpenMP synchronization varies depending on the underlying
hardware and the number of parallel threads. Our work evalu-
ates two representatives of the barrier-related synchronization



implementations, building upon the tree-based [7] and the
centralized algorithm [8], as well as mutex-based synchro-
nization. Our results expose the scalability and performance
bottlenecks of different synchronization constructs on two
distinct ARMv8 multi-cores. This study thus offers quantified
results for optimizing synchronization algorithms on ARMv8
multi-core systems in particular and future ARM HPC systems
in general.

II. SETUP

This section introduces the architecture features of
Phytium 2000+ and ThunderX2, and then describes the ex-
perimental configurations and benchmarks.

A. Hardware Platforms

Phytium 2000+ integrates 64 ARMv8 compatible process-
ing cores running at 2.2GHz. Each core has a private L1 cache
of 32KB for data and instructions, respectively. Figure 1(a)
shows that the cores are partitioned into eight panels to
form a non-uniform memory access structure. There are two
clusters in each panel. Each cluster contains four
processing cores, a 2MB shared L2 cache and one directory
control unit (DCU) used to maintain the directory-based cache
coherency. The DCUs can access any memory control unit
(MCU) according to the corresponding configurations. The
panels are routed and communicated through the on-chip
network interface. The communication latency and bandwidth
vary according to the distances of different panels. The
floating-point pipeline can combine and execute dual-channel
floating-point SIMD instructions to achieve peak performance
of 4 double-precision floating-point operations per cycle.

Incorporating a two-socket Vulcan system, ThunderX2 in-
tegrates 64 ARMv8 compatible cores (32 cores in a single
socket). Each core is equipped with a 32KB L1 data cache,
a 32KB L1 instruction cache and a 256KB L2 cache and
operates at 2.2GHz in the normal mode, 2.5GHz in the Turbo
mode. Figure 1(b) shows that 32 cores in a Vulcan socket share
a distributed 32MB L3 cache. The two sockets are connected
with a Cavium’s coherent processor interconnect (CCPI2) and
compose a 2-way SMP node. ThunderX2 also uses the CCPI2
to achieve cache coherence across the two sockets. ThunderX2
also supports 128-bit SIMD instructions.

B. Experimental Configurations

We use the EPCC benchmarks [6] to measure the overhead
of the OpenMP constructs. It works by comparing the execu-
tion time of a serial code with the execution time of the code
in the parallel zone with specific directives.

To minimize the noise of system environment, we modified
the source code of the EPCC benchmarks. On the one hand,
only one single construct is specified to measure its own
overhead. On the other hand, 20 iterations for each directive
are run to ensure the accuracy of overhead measurements.
We use the environment variable OMP_NUM_THREADS to
specify the number of threads, and GOMP_CPU_AFFINITY
to pin each thread to a specified hardware core. Note that we

use the COMPACT policy in this work, i.e., binding threads
according to the core number. In this way can we analyze
the performance behaviours from the perspective of processor
architectures in a straightforward manner. We use GCC v8.3.0
and LLVM v10.0.1 on both platforms.

III. RESULTS

This section shows the performance of various synchro-
nization constructs (i.e., barrier-related and mutex-based). We
enable the comparative analysis combined with different com-
piler implementations and processor architectures.

A. Barrier-related Synchronization

The most commonly used barrier-related synchronization
construct is the barrier itself. We analyze the explicit
barrier and implicit barrier embedded in work-sharing regions
(single and for). We also discuss the overhead of work-
sharing constructs through the comparison of parallel
(parallel for). In addition, we measure the overhead of
reduction, which resembles the barrier synchronization.

1) Barrier: We measure the barrier performance imple-
mented in GCC and LLVM, respectively in Figure 2. We
observe that the barrier overhead based on GCC grows linearly
over the number of parallel threads.

By contrast, the overhead based on LLVM exhibits a
logarithmic growth, which shows much better scalability.
We also find that the different growth trends do not vary
across processors. The different overhead behaviour between
Phytium 2000+ and ThunderX2 is the parameters of linear and
logarithm growth, which is determined by their architecture.

We explain the performance difference by analyzing the
runtime implementation of barrier in GCC and LLVM.
The sense-reversing centralized algorithm is used in libgomp
of GCC to implement barrier synchronization [8], which
essentially belongs to a linear algorithm. When taking a closer
look at the implementation, we note that the algorithm uses
two global shared variables, “counter” and “global sense”, to
control synchronization. Each thread atomically decrements
the counter to announce its arrival when it enters the barrier.
Furthermore, it will spin for release if it is not the last arrival
thread. When all threads reach the barrier, the last one reverses
“global sense” to wake up other threads. During the synchro-
nization process, the atomic operation of multiple threads is
to be executed in order, and the overhead is accumulated.
Therefore, as the number of threads increases, the overhead
of the barrier grows linearly.

Multiple barrier algorithms are implemented in libomp
of LLVM [7], e.g., the linear barrier, the tree barrier, the
hyper barrier, and the hierarchical barrier. Among them, the
hyper algorithm is used by default. It constructs a hypercube-
embedded tree to implement synchronization. Threads are
divided into several groups. Once all the threads in the group
reach the barrier, the parent thread of each group performs
the next round of group synchronization until only one thread
is left. It is actually a traversal of the tree. Each thread is
assigned to a leaf node. In the hypercube-embedded tree, every



(a) Phytium 2000+ (b) ThunderX2

Fig. 1. An architectural overview of Phytium 2000+ and ThunderX2.

four threads are divided into a group, and the thread with
the smallest number is set to the parent thread. Figure 3(a)
shows the tree structure with 16 threads. Synchronization at
each layer of the tree is performed in a parallel fashion.
Theoretically, the overhead is proportional to the number of
layers of the tree, thereby rendering a logarithmic growth.

When comparing the two processors, we see that the curve
slope of ThunderX2 is much larger and the overhead is almost
three times as large as that of Phytium 2000+ with 64 threads
(42.479 µs versus 14.823 µs), which reflects the potential
drawback of centralized barrier on the Vulcan socket. In a
UMA Vulcan socket, the core accesses the flag value in
the shared L3 cache causing severely busy waiting, which
increasing the access latency. Thanks to the efficient DCU
and the on-chip interconnection, the synchronization overhead
on Phytium 2000+ is relatively small. The performance of
LLVM’s implementations on the two multi-core CPUs be-
haves similarly (see Figure 2(b)). Both overhead increase
logarithmically, and the maximum numbers are similar. This is
because the hyper-embedded tree can adapt to the underlying
architectures.

2) Implicit Barrier: We measure the performance of the
OpenMP directives including the implicit barrier synchroniza-
tion. Such directives can be partitioned into two categories:
one relates to the management of parallel work regions such
as parallel and parallel for, and the other does not,
such as single and for.

a) Single and For: Figure 4 shows the overhead of
single and for implemented in GCC and LLVM on
Phytium 2000+ and ThunderX2. We also compare their over-
head with that of barrier. It is easy to find that their
overhead is similar no matter which compiler and platform are
used. There is an implicit synchronization point at the end of
the work-sharing region of single and for. The overhead
of these two directives is mainly from this synchronization.
While single has extra overhead of controlling the single-
thread entry of a parallel region with atomic operations, the
overhead difference between single and barrier is evi-
dent in Figure 4(b). This is because the atomic operations on
ThunderX2 are more expensive than that on Phytium 2000+.

b) Parallel: The parallel directive has an implicit
synchronization point in its working-share region. So its
performance shows exactly the same trend as that of the

barrier as shown in Figure 5. Nevertheless, it also has ad-
ditional overhead for thread management. The master creates
all required threads in the GCC implementation once starting a
parallel region with the pthread_create API. In contrast,
the LLVM compiler maintains a working thread pool to avoid
repetitive thread creation and destruction.

On Phytium 2000+, the GCC thread management overhead
does not change in the range of 8 to 64 threads, remaining
around 1.8 µs. Since each panel manages its memory module.
Threads mapped onto different panels can be created concur-
rently. However, the thread mapped onto the same panel should
be created sequentially. Therefore, the management overhead
grows in the range of 1 to 8 threads. While on ThunderX2,
the two Vulcan sockets constitute the 2-way SMP architecture
and all the 64 cores share the memory. Consequently, the
GCC management overhead grows with the number of threads
increasing (see Figure 5(b)). With 64 threads, the overhead of
parallel is twice as much as that of barrier. In Contrast
to GCC’s management overhead, the overhead in the LLVM
implementation (see 5) is smaller.

On ThunderX2, the GCC implementation yields lower over-
head when using a few threads. When the number of threads
is more than six, the LLVM implementations outperform GCC
(see Figure 5(b)).

3) Reduction: The OpenMP reduction directive’s overhead
contains implicit synchronization, thread-management and re-
duction operations. Figure 6 depicts the reduction overhead
on Phytium 2000+ and ThunderX2. As the number of threads
increases, the growth trends of reduction overhead are sim-
ilar to that of the barrier directive on Phytium 2000+ (see
Figure 6(a)). For the same thread counts, the overhead of
reduction is about 2.5 microseconds larger than that of barrier.
We also observe that the overhead gap between reduction and
barrier increases over the number of threads for LLVM. When
using a few threads, GCC yields a smaller reduction overhead,
but LLVM performs better when using more threads.

We dive into the source code of GCC and LLVM to explain
the performance behaviours. For GCC’s implementation, slave
threads will store the private reduction variable in a shared
array indexed by thread id when synchronizing. Until all
threads finished their computation, the master thread starts to
traverse the array to accomplish reduction. Our code analysis
shows that the LLVM compiler implements the reduction



0 8 16 24 32 40 48 56 64
num_threads

0

10

20

30

40

ov
er
he

ad
s(
μs
μ

Phytium-2000+
ThunderX2

(a) GCC

0 8 16 24 32 40 48 56 64
num_threads

0

1

2

3

4

ov
er
he

ad
s(
μs
μ

Phytium-2000+
ThunderX2

(b) LLVM

Fig. 2. The comparison of barrier overhead based two compiler implementation on Phytium 2000+ and ThunderX2.

(a) Barrier (b) Reduction

Fig. 3. The hypercube-embedded tree used in barrier (fan-in=4) and reduction (fan-in=2) of the LLVM implementation with 16 threads.

0 8 16 24 32 40 48 56 64
num_threads

0
2
4
6
8

10
12
14

ov
er
he
ad
s(
μs
μ

LLVM_Barrier
LLVM_Single
LLVM_For
GCC_Barrier
GCC_Single
GCC_For

(a) Phytium 2000+

0 8 16 24 32 40 48 56 64
num_threads

0

10

20

30

40

ov
er
he
ad
s(
μs
μ

LLVM_Barrier
LLVM_Single
LLVM_For
GCC_Barrier
GCC_Single
GCC_For

(b) ThunderX2

Fig. 4. The performance of single & for compared to barrier.

0 8 16 24 32 40 48 56 64
num_threads

0.0

2.5

5.0

7.5

10.0

12.5

15.0

ov
er
he
ad
s(
μs
μ

LLVM_Barrier
LLVM_Parallel
GCC_Barrier
GCC_Parallel

(a) Phytium 2000+

0 8 16 24 32 40 48 56 64
num_threads

0

20

40

60

80

ov
er
he

ad
s(
μs
μ

LLVM_Barrier
LLVM_Parallel
GCC_Barrier
GCC_Parallel

(b) ThunderX2

Fig. 5. The performance of parallel compared to barrier.



0 8 16 24 32 40 48 56 64
num_threads

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

ov
er
he

ad
s(
μs
μ

LLVM_reduction
GCC_reduction
LLVM_barrier
GCC_barrier

(a) Phytium 2000+

0 8 16 24 32 40 48 56 64
num_threads

0

20

40

60

80

ov
er
he
ad
s(
μs
μ

LLVM_reduction
GCC_reduction
LLVM_barrier
GCC_barrier

(b) ThunderX2

Fig. 6. The performance of reduction and comparison with barrier.

0 8 16 24 32 40 48 56 64
num_threads

0
10
20
30
40
50
60
70
80

ov
er
he
ad
s(
μs
μ

ThunderX2
Phytium-2000+

(a) GCC

0 8 16 24 32 40 48 56 64
num_threads

0

2

4

6

8

10

12

ov
er
he

ad
s(
μs
μ

ThunderX2
Phytium-2000+

(b) LLVM

Fig. 7. The comparison of reduction overhead between two processors.

operation in three different ways: critical, atomic and tree. Our
experimental results demonstrate that the hyper-embedded tree
algorithm is actually used during execution. Different from the
explicit barrier, the branch factor in the reduction operation
decreases from 4 to 2, which reshapes the hyper-embedded
tree form (illustrated in Figure 3(b)) and leads to performance
degradation (see Figure 6). Like the parallel directive, the GCC
compiler has a smaller overhead when using a few threads on
ThunderX2. When the number of threads is larger than 10, the
LLVM implementations perform better(see Figure 6(b)).

Figure 7(a) compares the GCC reduction overhead on
Phytium 2000+ and ThunderX2. We use the curve-fitting
approach to model the reduction overhead on Phytium 2000+
and ThunderX2 in Equation 1 and Equation 2 to intuitively
distinguish the growth rate. Obviously, the GCC compiler
yields a smaller overhead on ThunderX2. LLVM’s reduction
overhead on Phytium 2000+ and ThunderX2 are compared in
Figure 7(b). The overhead on ThunderX2 is larger than that
on Phytium 2000+. The two compilers’ implementations both
perform better on Phytium 2000+.

We conclude that when using over 32 threads, the overhead
on the ThunderX2 increase sharply. We believe that this is
because the additional cross-socket memory access overhead.

y = 0.249x+ 0.786 (1)

y = 0.0112x2 + 0.591x− 1.538 (2)

B. Mutex-based Synchronization

In this subsection, we focus on the mutex-based synchro-
nization on Phytium 2000+ and ThunderX2.

1) Critical and Lock: The critical directive is a typical
representative of mutex-based synchronization, which ensures
that only one thread enters the critical section each time. It
is implemented based on the locking and unlocking mech-
anism, mainly involving two functions omp set lock() and
omp unset lock().

In Figure 8(b) and Figure 8(c), the overhead of critical
and lock are compared on Phytium 2000+. Their simi-
lar performance indicates that the dominating overhead of
critical comes from the usage of locking and unlocking.
Figure 8(a) compares the overhead of critical based on
GCC and LLVM. The overhead of the two compilers is almost
the same when the number of threads is fewer than eight.
While the overhead of LLVM is smaller than GCC when the
number of threads over eight.

Figure 9(a) shows the critical overhead implemented
by LLVM and GCC on ThunderX2. When using fewer than 8
threads, the GCC implementation outperforms that the LLVM
implementation. on the contrary, the LLVM implementation
will have a smaller overhead when launching more threads.

The critical implementation in LLVM is identical to
the critical construct description in the OpenMP API
Specification. The thread dispatches corresponding callbacks
when it enters and/or exits from the critical region. When the



0 8 16 24 32 40 48 56 64
num_threads

0.1

0.2

0.3

0.4

0.5
ov
er
he

ad
s(
μs
μ

LLVM
GCC

(a) Critical

0 8 16 24 32 40 48 56 64
num_threads

0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

ov
er
he

ad
s(
μs

μ

Critical
Lock

(b) GCC

0 8 16 24 32 40 48 56 64
num_threads

0.1

0.2

0.3

0.4

0.5

ov
er
he

ad
s(
μs

μ

Critical
Lock

(c) LLVM

Fig. 8. The performance of critical and comparison with lock on Phytium 2000+.

0 8 16 24 32 40 48 56 64
num_threads

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

ov
er
he

ad
s(
μs
μ

LLVM
GCC

(a) Critical

0 8 16 24 32 40 48 56 64
num_threads

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

ov
er
he

ad
s(
μs

μ

Critical
Lock

(b) GCC

0 8 16 24 32 40 48 56 64
num_threads

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

ov
er
he
ad
s(
μs
μ

Critical
Lock

(c) LLVM

Fig. 9. The performance of critical and comparison with lock on ThunderX2.

number of threads increases from 1 to 32, the critical
overhead based on LLVM remains stable. This performance
behaviour is left for future investigation, and we speculate that
it relates to the underlying architectures. We demonstrate that
the critical implementation in LLVM is more suitable for
the UMA Vulcan architecture than GCC.

2) Atomic: The atomic directive specifies that operation
to the variable must be atomic, which is the minimum mutex-
based synchronization. It provides a smaller critical region
than the critical directive. The two compilers (GCC and
LLVM) use the same mechanism (i.e. the __sync builtins) to
implement the atomic directive. Figure 10(a) compares the
atomic overhead based on two compilers. Their overhead is
approximately the same when using few threads. As the num-
ber of threads increase, GCC gradually expresses superiority.
We compare the performance of critical and atomic
based on two compilers in Figure 10(b) and Figure 10(c). It
can be distinctly observed that the overhead of atomic is
significantly lower than that of critical baesd on the same
compiler. Since the atomic directive can utilize hardware
operations to immensely reduce the implementation overhead.

Figure 11(a) compares the atomic overhead implemented
by GCC and LLVM. They approximately coincide all the
time because the two compilers adopts the same implemen-
tation mechanism. As the number of threads increase from
0 to 32, the overhead of atomic delivers linear growth.
It is because that the time of acquiring the atomic lock
continuously increases in a UMA Vulcan socket. Figure 11(b)

shows the overhead of atomic and critical imple-
mented by GCC compiler. They exhibit similar growth due
to the consistent function calls (gomp_mutex_lock and
gomp_mutex_unlock). But the atomic directive adopts
the cheaper atomic lock than default lock, which reduces the
implementation overhead.

IV. DISCUSSION

This section summarizes our findings on OpenMP imple-
mentations and discusses how the OpenMP synchronizations
can be optimized for future directions.

LLVM OpenMP outperforms GCC’s on ARMv8 proces-
sors for larger thread counts. Overall, the LLVM implemen-
tation is more scalable than GCC on both Phytium 2000+ and
ThunderX2. For the barrier-related synchronization, GCC uses
a centralized barrier which brings “hot-spot” problem while
LLVM adopts a hyper-embedded tree barrier. They show linear
and logarithmic growth in overhead, respectively. The LLVM
implementation yields a smaller overhead when using more
threads than GCC, whereas the GCC compiler excels when
using fewer threads. Thus, a hybrid barrier implementation
for the underlying architecture is required. Furthermore, GCC
incurs more thread management overhead than LLVM. This is
because LLVM maintains a thread pool to avoid repetitively
creating threads when starting a parallel region.

For the mutex-based synchronization, their performance is
similar. We note that the performance of critical on GCC
is even better than LLVM.



0 8 16 24 32 40 48 56 64
num_threads

0.05

0.10

0.15

0.20

0.25

0.30
ov
er
he

ad
s(
μs
μ

LLVM
GCC

(a) Atomic

0 8 16 24 32 40 48 56 64
num_threads

0.1

0.2

0.3

0.4

0.5

ov
er
he

ad
s(
μs

μ

Critical
Atomic

(b) GCC

0 8 16 24 32 40 48 56 64
num_threads

0.1

0.2

0.3

0.4

0.5

ov
er
he

ad
s(
μs

μ

Critical
Atomic

(c) LLVM

Fig. 10. The performance of atomic and comparison with critical on Phytium 2000+.

0 8 16 24 32 40 48 56 64
num_threads

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

ov
er
he

ad
s(
μs
μ

LLVM
GCC

(a) Atomic

0 8 16 24 32 40 48 56 64
num_threads

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

ov
er
he

ad
s(
μs

μ

Critical
Atomic

(b) GCC

0 8 16 24 32 40 48 56 64
num_threads

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

ov
er
he

ad
s(
μs

μ

Critical
Atomic

(c) LLVM

Fig. 11. The performance of atomic and comparison with critical on ThunderX2.

The overhead of OpenMP constructs varies across archi-
tectures. There are many differences between Phytium 2000+
and ThunderX2 in terms of the performance of OpenMP
constructs. It mainly comes from the architectural disparities.
Overall, the overhead on Phytium 2000+ is smaller.

In terms of the centralized barrier, the overhead growth on
ThunderX2 is higher than that on Phytium 2000+. In the mem-
ory hierarchy of a UMA Vulcan socket, the shared L3 cache is
utilized to implement the centralized barrier, which degrades
the performance for busy waiting. On Phytium 2000+, the dis-
tributed directory control and the on-chip interconnection can
provide efficient data accesses. Besides, the communication
across the ThunderX2 sockets via CCPI2 incurs an overhead.

Adaptive optimizations for OpenMP implementations are
required. On ThunderX2, the GCC implementation can yield
better performance when using a few threads, whereas the
LLVM implementations excel for a large number of threads.
Neither GCC nor LLVM has provided such an adaptive
OpenMP implementation based on different underlying archi-
tectures.

Besides, efficient synchronization algorithms such as tour-
nament barrier [2], [5], [9], are shown to be scalable on
the NUMA architectures, which is regarded as a promising
candidate implementation for the ARMv8 processors. In a
nutshell, an adaptive implementation is required for future
OpenMP implementations.

V. RELATED WORK

This section provides a brief introduction to the related work
on measuring the overhead of OpenMP constructs, evaluating
its scalability and synchronization.

Measurement of OpenMP overhead The most comprehen-
sive benchmark for OpenMP constructs is EPCC OpenMP
micro-benchmark suite [6], [10]. Its working principle is to
subtract the execution time of serial code from the execution
time of parallel code containing specific OpenMP directive
to obtain the overhead of corresponding structure. This pa-
per utilized the EPCC benchmark to the experimental datas.
Fürlinger et al. [11] proposed a tool to evaluate the runtime
characteristics of OpenMP applications. The tool defines the
overhead of OpenMP structures into four categories according
to the causes, which are derived from synchronous operations,
unbalanced workloads, limited parallelism and thread manage-
ment. The EPCC benchmark is well designed to capture the
overhead of complex data environment. However, it does not
directly measure the overhead of a single OpenMP directive,
so it is more vulnerable to noise on account of environmental
impact. Iwainsky et al. [12] expanded the EPCC benchmark
to evaluate various categories of overhead implemented by
OpenMP directives such as the minimum cost of last in first
out when the thread reaches the fence, average cost, etc.

Scalability of OpenMP implementation Shirako et al. [13]
propose two new synchronization constructs in the OpenMP
programming model, thread-level phasers and iteration level



phasers to support various synchronization patterns such as
point-to-point synchronizations and sub-group barriers with
neighbor threads. Liao et al. [14] analyzed the performance of
OpenMP structure on UltraSparc IV and Xeon processors to
explore its performance supported by SMP technology. Since
the SMP system and memory hierarchy are not considered
in OpenMP design, the architecture and compilation strategy
need to be reconsidered to predict the parallel speedup. Iwain-
sky et al. [12] applied automated performance modeling to
analyze the scalability in OpenMP structures. They found that
the OpenMP structure actually shows linear or superlinear
growth instead of expected logarithmic or linear growth.
Jammer et al. [15] compared the OpenMP synchronization
implementation and overhead of LLVM and GCC [12]. They
found that the LLVM compiler generally outperformed on
Xeon processors, but the gcc compiler outperformed for a
small number of threads. With regard to ARMv8 architecture,
Michalowicz et al. [16] analyzed the performance of OpenMP
applications with different compilers on the A64FX platform.
But their evaluation was based on practical applications rather
than specific directives.
Synchronization evaluation and optimization Ramachandra
et al. [2] researched the impact of different synchronization
algorithms to the overhead of OpenMP constructs. They found
that for any OpenMP construct, there is no optimal imple-
mentation algorithm due to the different number of threads
and architecture. In addition, there has been much work on
the evaluation of synchronization algorithms [3], [9], [17]–
[20]. Researches have shown that a given synchronization
implementation depends on the number of launched threads,
architecture, parallel applications and specific system work-
loads. Ma et al. [21] suggested removing redundant fences or
implementing DOACROSS parallelism to reduce the overhead
of synchronization in OpenMP programs. For non-uniform
memory access multi-core systems, Zeng et al. [5] proposed
a barrier optimization framework and two synchronization
algorithms based on the framework. The experimental results
on their three NUMA multi-core platforms show that the
synchronization algorithm optimized by the framework is as
good as the most advanced methods even provides better
performance. Huang et al. [22] extended the implementation
of barrier and reduction directives in OpenMP. Contrasted
with the original OpenMP performance, the performance of
the extended directives on SDSM system has been signifi-
cantly optimized. In addition, these two extended directives
are defined at the OpenMP instruction level, through which
programmers can optimize program performance.

VI. CONCLUSION

We have presented a comprehensive study of OpenMP
synchronization implementations on ARMv8 multi-cores. Our
work targets GCC and LLVM by using the EPCC microbench-
mark to evaluate the overhead of OpenMP constructs in
terms of barrier-related and mutex-based synchronization on
Phytium 2000+ and ThunderX2. We observe that the per-
formance of OpenMP constructs varies with regard to syn-

chronization algorithms and thread-management. The LLVM
OpenMP compiler shows better performance than that of GCC
for larger number of threads. Accordingly, for the reduction
operations and parallel region managements, GCC incurs a
larger overhead. Thus, the LLVM OpenMP implementation is
regarded to be more scalable and efficient. When it comes to
the mutex-based synchronization, their implementation over-
head varies with the underlying architectures. For future work,
we believe that a better OpenMP implementation has to
adapt to processor architectures, input workloads and working
contexts. Learning-based methods could be used to select
the right configuration, e.g., the fan-in, the scheduling work
granularity during runtime.

VII. ACKNOWLEDGEMENTS

This work is partially supported by the National Key Re-
search and Development Program of China under Grant No.
2020YFA0709803, the National Natural Science Foundation
of China under Grant Nos. 61972408 and 61872294.

REFERENCES

[1] “The openmp api specification for parallel programming,” OpenMP
Home. https://www.openmp.org/, Tech. Rep.

[2] N. R. et al., “Scalability evaluation of barrier algorithms for openmp,”
in IWOMP 2009.

[3] C. A. Lee, “Barrier synchronization over multistage interconnection
networks,” in SPDP 1990.

[4] G. F. Pfister and V. A. Norton, “”hot spot” contention and combining
in multistage interconnection networks,” in ICPP’85.

[5] Z. M. Yi, F. Chen, and Y. Y. Yao, “A barrier optimization framework
for NUMA multi-core system,” Concurr. Comput. Pract. Exp., vol. 32,
no. 5, 2020.

[6] J. M. Bull and D. O’Neill, “A microbenchmark suite for openmp 2.0,”
SIGARCH Comput. Archit. News, vol. 29, no. 5, pp. 41–48, 2001.

[7] “Llvm: Llvm openmp runtime library,” the LLVM Project, 2018.
https://openmp.llvm.org/Reference.pdf, Tech. Rep.

[8] “Gnu offloading and multi processing runtime library: The gnu
openmp and openacc implementation,” GNU libgomp, 2018.
https://gcc.gnu.org/onlinedocs/gcc-8.2.0/libgomp.pdf, Tech. Rep.

[9] D. Grunwald and S. Vajracharya, “Efficient barriers for distributed
shared memory computers,” in IPPS 1994.

[10] J. M. Bull, “Measuring synchronisation and scheduling overheads in
openmp,” 2002.

[11] K. Fürlinger and M. Gerndt, “Analyzing overheads and scalability
characteristics of openmp applications,” in VECPAR 2006.

[12] C. Iwainsky et al., “How many threads will be too many? on the
scalability of openmp implementations,” in Euro-Par 2015.

[13] J. Shirako, K. Sharma, and V. Sarkar, “Unifying barrier and point-to-
point synchronization in openmp with phasers,” in IWOMP 2011.

[14] C. H. Liao et al., “Evaluating openmp on chip multithreading platforms,”
in IWOMP 2005.

[15] T. Jammer et al., “A comparison of the scalability of openmp imple-
mentations,” in Euro-Par 2020.

[16] B. Michalowicz et al., “Comparing the behavior of openmp imple-
mentations with various applications on two different fujitsu A64FX
platforms,” in PEARC ’21.

[17] A. Rodchenko et al., “Effective barrier synchronization on intel xeon
phi coprocessor,” in Euro-Par 2015.

[18] T. Hoefler et al., “A Survey of Barrier Algorithms for Coarse Grained
Supercomputers,” Chemnitzer Informatik Berichte, vol. 04, no. 03, Dec.
2004.

[19] S. Ramos and T. Hoefler, “Modeling communication in cache-coherent
SMP systems: a case-study with xeon phi,” in HPDC’13.

[20] C. Ball and M. Bull, “Barrier synchronisation in java,” 2008.
[21] H. T. M et al., “Barrier optimization for openmp program,” in

ACIS/SNPD/IWEA/WEACR 2009.
[22] C. Huang and X. J. Yang, “Improve openmp performance by extending

barrier and reduction constructs,” in ISHPC 2003.


