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Abstract—The OpenCL standard allows targeting a large
variety of CPU, GPU and accelerator architectures using
a single unified programming interface and language. But
guaranteeing portability relies heavily on platform-specific im-
plementations. In this paper, we provide an OpenCL implemen-
tation on an ARMv8 multi-core CPU, which efficiently maps
the generic OpenCL platform model to the ARMv8 multi-core
architecture. With this implementation, we first characterize
the maximum achieved arithmetic throughput and memory
accessing bandwidth on the architecture, and measure the
OpenCL-related overheads. Our results demonstrate that there
exists an optimization room for improving OpenCL kernel
performance. Then, we compare the performance of OpenCL
against serial codes and OpenMP codes with 11 benchmarks.
The experimental results show that (1) the OpenCL imple-
mentation can achieve an average speedup of 6× compared to
its OpenMP counterpart, and (2) the GPU-specified OpenCL
codes are often unsuitable for this ARMv8 multi-core CPU.
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I. INTRODUCTION

Nowadays platforms often incorporate specialized pro-
cessing capabilities (e.g., GPUs, MICs, FPGAs or DSPs) to
handle particular tasks. Although using such specialized pro-
cessing units (i.e., SPU) gains in performance and/or energy
efficiency, programming these units is challenging. In partic-
ular, programmers have to use vendor-specific programming
interfaces (e.g., CUDA for NVIDIA GPUs) to exploit the
architectual diversity, and they have to learn a different
programming interface when moving to a new platform. As
an alternative, leveraging a portable programming interface
such as OpenCL is regarded as a promising approach [13].

With the prevalence of heterogeneous systems comprising
both CPU and accelerators, we argue that it is of great
significance for the heterogeneous programming interface
to support both CPU and SPU as accelerator targets. First,
a large amount of OpenCL legacy code can run seamin-
glessly on the CPU-only environment and avoid the need
of painful code porting. Second, CPU features more and
more hardware cores and memory bandwidth, minimizing
the gap between CPU and its accelerator counterpart [14].
At the same time, the cost of moving data between OpenCL
host and devices can be avoided. Third, it is critical for a
heterogeneous programming interface to manage the CPU
and the SPU cores under an umbrella. In this way, program-
mers or runtimes can make a decision of how to distribute
workloads: CPU-only, SPU-only, or both. These motivate

the need for the heterogeneous programming interfaces to
support not only SPU, but the traditional CPU as well.

FT-1500A is a 16-core ARMv8-based processor by the
Phytium corporation and works in a CPU-only form (Sec-
tion II-B). In this paper, we present an efficient OpenCL
implementation on the FT-1500A CPU, which maps the
OpenCL device model to the ARMv8 multi-core architec-
ture. This implementation consists of a kernel compiler and
an OpenCL runtime: the kernel compiler (based on LLVM)
translates an OpenCL kernel into the ARMv8 binary code,
and the runtime schedules commands in queues to execute
on the multiple processing cores of FT-1500A.

We characterize our implementation in terms of compil-
ing overheads, arithmetic throughput, and device memory
bandwidth. The results demonstrate that there exists an op-
timization space of further reducing the compiling overheads
and generating more efficient kernel binaries (e.g., inter-
thread vectorization). Then we use real-world applications
from the Parboil suite to compare the performance of our
OpenCL with the serial code and the OpenMP code [20].
Our experimental results show that our OpenCL imple-
mentation performs on average 6× faster than its OpenMP
counterpart. The performance improvements largely come
from the efficient implementation of critical regions and the
improved utilization of data locality. The results also show
that the OpenCL codes run faster than the serial codes for the
majority of the benchmarks. Among the eleven benchmarks,
we notice that three OpenCL codes perform worse than the
serial codes. This is due to the GPU-specified optimizations
embedded in the OpenCL codes (e.g., using local memory
and/or coalesced memory accesses).

To summarize, we make the following contributions.
• We provide an efficient implementation of the OpenCL

programming standard based on the LLVM compiling
infrastructure for the FT-1500A CPU (Section III).

• We characterize the implementation (overheads and
device capability) on FT-1500A compared to Intel’s
OpenCL implementation on E5-2620 (Section IV).

• We evaluate the performance of our OpenCL imple-
mentation against the serial code and the OpenMP
counterpart with 11 benchmarks (Section V).

Although our OpenCL framework is implemented on
FT-1500A, we argue that it is equally applicable to other
ARMv8-based multi-core CPUs. Our framework is also ex-
tensible to ARMv8-based accelerators by free-riding LLVM.



II. BACKGROUND

In this section, we introduce the OpenCL programming
interface and describe FT-1500A’s architecture details.

A. Open Computing Language

Open Computing Language (OpenCL) is a relatively new
standard for parallel programming of many-core architec-
tures [22]. Addressing functional portability, OpenCL uses a
generic platform model comprising a host and one or several
devices, which are seen as the computation engines. They
might be central processing units (CPUs) or “accelerators”
such as graphics processing units (GPUs), attached to a
host processor (a CPU). Devices have multiple processing
elements (PEs), further grouped into several compute units
(CUs), a global memory and local memories.

An OpenCL program has two parts: kernels that execute
on one or more devices, and a host program that exe-
cutes on the host (typically a traditional CPU). The host
program defines the contexts for the kernels and manages
their execution, while the computational task is coded into
kernel functions. When a kernel is submitted to a device for
execution, an index space of work-items (instances of the
kernel) is defined. Work-items, grouped in work-groups, are
executed on the processing elements of the device in a lock-
step fashion. Each work-item has its own private memory
space, and can share data via the local memory with the
other work-items in the same work-group. All work-items
can access the global memory, and/or the constant memory.

To maximize hardware utilization, OpenCL provides vec-
tor data type and related built-in functions. The vector data
type is defined with the type name, i.e., char, uchar,
short, ushort, int, uint, float, long, ulong,
followed by a literal value n that defines the number of
elements in the vector. Thus, a vector is a fixed-length
collection of scalar data elements, e.g., float4 is a vector
that contains 4 elements typed float. Using vector types
is regarded as explicit and high-level vectorization [12].

B. The FT-1500A CPU

FT-1500A (codenamed “Earth”) is a family of a 64-bit
ARMv8-based multi-core system on chips developed by
Phytium and launched in 2016 [26]. It incorporates multiple
Xiaomi FTC660 cores, a customized implementation of the
ARMv8 specification and is manufactured with a 28nm pro-
cess. The exact number of cores varies by models. The FT-
1500A used in this context has 16 cores and runs at 1.5 GHz,
as shown in Figure 1. And SIMD instructions are available to
manipulate 128-bits data at a time. Therefore, the theoretical
peak floating point performance is 192 Gflops/s in single
precision and 96 Gflops/s in double precision.

On FT-1500A, each core has a private L1 data cache
sized of 32 KB and a private L1 instruction cache sized
of 48 KB. An L2 cache (2 MB) is shared by every four

Figure 1. The conceptual view of the FT-1500A architecture. Cx represents
the xth hardware core and LLC represents the last-level cache.

cores (Figure 1). Then all the cores share a 8 MB last-
level cache [27]. Besides, the chip has four DDR3-1600
memory controllers, which can deliver a total of 51.2 GB/s
memory access bandwidth. It has two ×16 or four ×8 PCIE
Gen3 interfaces, and two GEthernet interfaces. Its maximum
power consumption is of 35 Watts. This processor is used
as OA servers, web servers and cloud computing servers,
etc. to run web services, transaction processing, datacenter
storage, database and network switching workloads.

As for the software part, FT-1500A runs Linux kylin
v3.14.0 and supports the OpenMP programming model
(v3.1). But it has no support of OpenCL yet, which
prevents us from running the OpenCL-compatible software.
Therefore, we take FT-1500A as a case to demonstrate how
we customize OpenCL on an ARMv8 multi-core CPU.

III. DESIGN AND IMPLEMENTATION

In this section, we present the design and the implemen-
tation details of OpenCL on FT-1500A. The overall design
is shown in Figure 2. Our compiling infrastructure on FT-
1500A consists of two parts: the kernel compiler and the run-
time system (Section III-B and III-C). The kernel compiler
aims to compile the kernels into device-specific binaries,
whereas the runtime implements the OpenCL APIs [14].

A. Overall Mapping

The OpenCL standard allows targeting a large range of
accelerating architectures using a single unified program-
ming interface and language. This is achieved by efficiently
mapping the OpenCL platform model (Section II-A) to the
underlying hardware. Overall, we map each hardware core
as a compute unit, each of which further has one processing
element. Note that the processing element can deal with a
128-bit vector one time. In this way, work-groups in the
NDRange are scheduled to different cores and run in a
concurrent manner. All the work-items in the same work-
group are executed on the same core sequentially [19]. We



(a) The framework (b) Work-item loop

Figure 2. The compiling infrastructure on FT-1500A: (a) shows the overall framework, and (b) showcases an example of performing the work-item loop
transformation.

choose not to execute a work-item on a core and map the
work-items of a work-group onto multiple cores, because a
significant context switching overhead would be introduced.

OpenCL defines a hierarchical device memory model:
private memory, local memory, constant memory, and global
memory (Section II-A). All the memory regions are allo-
cated in the main memory. Since only one work-group is
active on a core, we allocate one local memory per core and
reuse it for all the work-groups. This approach reduces off-
chip memory bandwidth usage, efficiently utilizes caches,
and saves expensive allocations [14]. Besides, constant
buffers are marked read-only by our runtime system.

B. Kernel Compiler

Many researchers have proposed compilation techniques
for OpenCL kernels to CPUs, where work-groups are sched-
uled to run on distinct hardware threads [14, 17, 21, 23, 30,
31]. Further, scheduling work-items within a work-group to
execute on a hardware thread is done either by wrapping
a region with a work-item loop [17, 21, 23, 31], or by
using user-level threads [14]. In this context, we use the
work-item-loop scheduling approach for reduced overheads.
Figure 2(b) shows an example kernel function before and
after performing the work-item loop transformation. This is
achieved by using nested loops around the kernel body to
replace the execution of work-items within a work-group.

Figure 2(a) shows how we transform application kernels
into device-specific binaries on FT-1500A. The compiler
uses a C front-end along with the LLVM framework with
extensions to support OpenCL. Thus, our compiler takes an
OpenCL C kernel as input and translates it into the LLVM
IR format for a single work-item (WIF LLVM-IR). This
IR kernel is then transformed into work-item loops (WIL
LLVM-IR), as illustrated in Figure 2(b). The LLVM-IR is

then optimized using standard optimization passes provided
in LLVM [14]. Finally, the target binary is generated with
LLVM-AS and the system linker.

When producing WIL, we have to respect the synchro-
nization semantics of the work-group barriers inside the
kernel source code [17]. In this work, we partition the code
with barriers into separate regions. Each code region is
transformed into a WIL and scheduled to run in parallel.
At the same time, the work-item loops are annotated with
LLVM metadata that retains the information of parallel
iterations. In this way, we can exploit the metadata and rely
on the mature compiler infrastructure to optimize WIL.

C. Runtime System

The runtime system needs to implement the OpenCL
APIs: the context APIs, the buffer APIs, the kernel APIs,
and the synchronization APIs (Figure 2(a)). The interaction
between host and device is performed in terms of com-
mands, which are broadly categorized into kernel execution
commands, data transferring commands and synchronization
commands. The host issues commands to devices, and the
commands are put into command queues. Devices fetch
commands from the queue and perform the corresponding
actions to finish the offloading work. Specifically, data
transferring commands are executed on the device using the
memcpy() function. Thus, executing this command is that
we move data elements from one buffer to another in the
main memory of FT-1500A. When executing kernel com-
mands, the host will launch the kernel function and dispatch
the predefined work-groups onto the spawned threads (and
hardware cores). Our API implementations of the OpenCL
framework are generic in C/C++, and thus are portable [17].
The runtime system calls the kernel compiler when building
kernel code and right before launching kernels.
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Figure 3. Comparing the compiling overheads on FT-1500A and E5-2620.

IV. CHARACTERIZING THE IMPLEMENTATION

In this section, we first characterize the implementation
overhead (the kernel start overhead and the kernel compil-
ing overhead), and then the measure the device capability
(the maximum achieved arithmetic throughput and memory
accessing bandwidth) with our OpenCL implementation.

A. Characterizing Overheads

We compare the overheads of two OpenCL implemen-
tations: one is our implementation on FT-1500A, and the
other is the one from Intel OpenCL v16.1.1 on a
dual-socket Intel Xeon E5-2620 v3 (short for E5-2620
thereafter). We consider the overheads from two aspects.
First, we measure the kernel start overhead (the elapsed
time between the CL_PROFILING_COMMAND_QUEUED
and CL_PROFILING_COMMAND_START events) for these
two platforms. For Intel OpenCL on E5-2620, this invocation
overhead is around 8 microseconds. Meanwhile, it is 13.8
microseconds for the OpenCL implementation on FT-1500A.
Launching an kernel is performed in a serial manner and thus
the difference of the kernel start overhead results from the
clocking difference, i.e., it is 1.5 GHz on FT-1500A versus
2.4 GHz on E5-2620.

Second, we compare the kernel compiling overheads
(the elapsed time taken by clBuildProgram and
clCreateKernel) as shown in Figure 3. We see that the
compiling overheads increase over the lines of code on both
platforms. On E6-2620, the compiling pass can be finished
within 0.5 seconds. Meanwhile, the compiling overhead is
up to 16 seconds on FT-1500A with LLVM compiled in the
debug mode. When in the release mode, the compiling
time is as long as one second. However, compiling the
kernels with very few lines of code still takes much more
time on the FT-1500A than on the E5-2620 CPU.

B. Characterizing the Device

1) Arithmetic Throughput: We measure the maximum
achieved floating point operations per second (flops) on
both FT-1500A and E5-2620. The microbenchmark is shown

__kernel
void arith_speed(__global float* input,

__global float* output,
unsigned int iterations){

unsigned int i;
unsigned int gid = get_global_id(0);
float a = (float)(input[0]);
float b = (float)(input[1]);
float tmp;
for(i = 0; i < iterations; ++i) {

tmp = a + b; a = b; b = tmp;
tmp = a + b; a = b; b = tmp;
......
tmp = a + b; a = b; b = tmp;

}
output[gid] = a;

}

Figure 4. A microbenchmark to measure the maximum achieved flops [32].

in Figure 4. Note that the statements between lines are
dependent to avoid compiler optimizations. The results are
obtained in two cases: (1) with a single work-group to
occupy a single hardware core, and (2) with abundant work-
groups to occupy all hardware cores.

Figure 5(a) shows the number of floating point additions
per second measured on a single hardware core. Note that
the results are normalized to that of the theoretical maximum
flops which is calculated from the hardware specifications
(i.e., a single core can run 6 GFLOPS on FT-1500A and
19.2 GFLOPS on E5-2620)1. With a single work-group in
the global range, using float4 or float8 can obtain a
maximum flops, peaking at 19.1 GFlops on E5-2620. This
number is very close to its theoretical roof. Using float
can achieve 32% of the upper-bound and using float2 can
reach 66% of the upper-bound on E5-2620. In such cases,
the data vectors are too short to utilize the 256-bit SIMD
lanes. This also indicates that the auto-vectorizer module of
the Intel compiler does not work in this case [16]. When
using float16 on E5-2620, the data vectors are longer
the SIMD lanes so that we have to split data vectors to fit
the hardware lanes. We argue that this partitioning overhead
leads to a decrease of the achieved flops.

Figure 5(a) also shows that, the longer the vectors are, the
larger the achieved flops is, on FT-1500A. We can achieve
5% and 80% of the maximum flops on a single core when
using float and float16, respectively. Due to the data
dependency between statements (Figure 4), each statement
consumes 5 cycles to produce results for its following
statement. In such a case, the work from work-items is
executed in a serial manner on a hardware core (20%) and
one out of four lanes are used (25%). Therefore, we can
obtain 5% = 25% × 20% with float on FT-1500A. This
low hardware utilization can be mitigated by exploiting long

1On FT-1500A and E5-2620, we consider only additions, rather than
the multiply-add operations. The overclocking feature is disabled on
E5-2620. Thus, the pipeline will execute one floating operation per cycle.
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Figure 5. Comparing the arithmetic throughput on E5-2620 and FT-1500A. We use the maximum allowed number of work-items per work-group and
repeat each run 100 times to obtain the mean value.

data vectors. This is why we observed a better performance
when using vector data types on FT-1500A. In particular,
although the length of float8 or float16 is larger than
that of SIMD lanes (128 bits) on FT-1500A, we notice a
further performance improvement.

When there are abundant work-groups, all the hardware
cores are utilized (Figure 5(b)). On E5-2620, we notice that
a close-to-bound flops (i.e., 90%) can be achieved when
using float8. This is due to the fact that the SIMD lane
is of 256 bits in width, which fits 8 floating data elements.
Meanwhile, using float16 incurs overheads of splitting
the long vector. On FT-1500A, we see that the maximum
achieved flops increases over vector length. The maximum
achieved flops is only around 40% of its theoretical bound.
The reasons are similar to that of a single work-group. For
future work, we plan to explore vectorization and instruction
pipeline overlapping between work-items.

2) Device Memory Bandwidth: We use two mi-
crobenchmarks to measure the device memory bandwidth:
coalesced and unit [11]. These two code variants
are shown in Figure 6. The coalesced benchmark lets
neighboring work-items in a work-group access the data
elements close to each other (Figure 6(a)) while the unit
benchmark lets a work-item read/write a continuous piece of
data elements. As shown Figure 6(b), the unit benchmark
allows that neighboring work-items access data elements that
are far from each other. Our experience shows that GPUs
prefer accessing memory space in a coalesced manner [13].
In this section, we will evaluate how these two benchmarks
perform on FT-1500A and E5-2620.

Figure 7 compares the achieved memory bandwidth
(read and write) on E5-2620 and FT-1500A. On E5-
2620, reading data is 7× faster in the unit manner than
in the coalesced manner, while writing data is 13× faster.
On FT-1500A, we notice a speedup of 58× and 45× for
reads and writes, respectively, in the unit fashion. Therefore,
both FT-1500A and E5-2620 can achieve a much larger
memory bandwidth in the unit manner, which differs from
GPUs. This is due to the fact that threads prefer accessing

__kernel
void readGlobalMemoryCoalesced(

__global float *data,
__global float *output,
int size){

int gid = get_global_id(0);
int j = 0;
float sum = 0;
int s = gid;
for(j=0; j<1024; ++j) {
float a0 = data[s+0];
float a1 = data[s+40960];
......
float a7 = data[s+286720];
sum += a0+a1+a2+a3+

a4+a5+a6+a7;
s = s+327680;

}
output[gid] = sum;

}

(a) Coalesced reads.

__kernel
void readGlobalMemoryUnit(

__global float *data,
__global float *output,
int size){

int gid = get_global_id(0);
int j = 0;
float sum = 0;
int s = gid*1024;
for(j=0; j<512; ++j) {
float a0 = data[s+0];
float a1 = data[s+1];
......
float a7 = data[s+7];
sum += a0+a1+a2+a3+

a4+a5+a6+a7;
s = s+8;

}
output[gid] = sum;

}

(b) Unit reads.

Figure 6. Loading data from global memory: (a) reading data in a
coalesced way, and (b) reading data in a unit-step manner.

contiguous data elements and can better exploit data locality
on both CPUs. Further, our experimental results with the
stream benchmarks peaks at 20 GB/s [24]. Using the
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Figure 7. The achieved memory bandwidth. We use a work-group sized of 512 on E5-2620 while using a workgroup sized of 64 on FT-1500A.

OpenCL code on FT-1500A can obtain a memory bandwidth
of 38 GB/s, which means the explicitly tiled code enables
faster memory accesses. To conclude, the unit accessing
fashion, rather than the coalesced accessing fashion, is
preferred on the FT-1500A CPU.

V. PERFORMANCE COMPARISION

In this section, we evaluate the performance of our
OpenCL implementation with the Parboil benchmark
suite. The benchmarks include bfs, stencil,
lbm, histo, sgemm, mri-q, cutcp, tpacf,
mri-gridding, spmv, and sad. We compare the
OpenCL performance with that of the serial code and
the OpenMP code on the FT-1500A CPU. The evaluation
includes two parts: (1) comparing the performance of the
OpenCL code (with 16 cores) and the serial code (with one
core), and (2) comparing the performance of the OpenCL
code against its OpenMP counter part on 16 cores. We
use GCC v6.2 (-O3) to compile the serial code and
the OpenMP code2 and use our OpenCL implementation
for the OpenCL code. When running OpenCL codes, we
use the default work-group configurations. Besides, we run
each experiment five times and calculate the medium value.

A. OpenCL Code versus Serial Code

Figure 8(a) shows the OpenCL performance against its se-
rial counter part. We see that the OpenCL code significantly
outperforms the serial code for stencil, tpacf, lbm,
mri-q, sgemm, spmv, cutcp, and sad. The speedup
varies over benchmarks and datasets. For most benchmarks
and datasets, we notice that the speedup is less than 16.
This is expected since FT-1500A has a total of 16 hardware
cores. We also see that the OpenCL version of stencil
runs 112× as fast as the serial code with the large dataset.
This application works on a 3D data grid iteratively: the
serial version reads data in the order of Z → Y → X ,
whereas the data elements in the X dimension are physically

2LLVM failed to compile the OpenMP benchmarks on FT-1500A. As
GCC is mature in compiling production-level codes, we use this compiler
with OpenMP enabled.

located close to each other. This noncontiguous memory
accesses are detrimental to data locality on FT-1500A. For
the OpenCL code, this three dimensional loop is transformed
into a 3D grid of work-items. Among them, the ones in
the Z dimension are neighbors, but they will access the
memory in a unit manner (Section IV-B2). Therefore, this
large speedup is not only because the OpenCL code can use
all the hardware cores, but the OpenCL stencil code can
access the memory space in a cache-friendly manner on FT-
1500A. Besides, the speedup is very limited for the small
datasets (e.g., spmv and sad). This is due to the fact that
spawning threads in OpenCL is an overhead compared to
that of the serial codes.

On the other hand, our OpenCL’s performance is poor on
the FT-1500A CPU for mri-gridding, bfs, and histo.
histo is a histogramming operation that accumulates the
number of occurrences of each output value in the input
data set [20]. The output histogram is a two-dimensional
matrix of char-type bins that saturate at 255. This benchmark
is intensively optimized and customized for GPUs. First,
loading the data elements of an image from global memory
is performed in a coalesced manner, which is preferred by
GPUs, rather than the ARMv8 CPU. Second, local memory
is used to stage the temporal histograming results. This
type of memory space is mapped to on-chip scratch-pads
in GPUs, which is unavailable on FT-1500A. Actually, this
memory space is allocated in the global memory space in
our OpenCL implementation. In this case, staging data in
local memory often degrades the overall performance.

Another case that the OpenCL code runs remarkably
worse than the serial code is bfs. This application takes ev-
ery node in the current frontier and enqueues all unexplored
neighbors to the next frontier. This process iterates until all
the nodes in the graph have been visited [20]. Thus, this
requires the traversing kernel to be launched iteratively and
the kernel launch overheads become nonnegligible. Besides,
the OpenCL code manages a hierarchical queue system [20].
Similar to histo, local memory is used in bfs to stage the
local queue of frontiers. To summarize, OpenCL performs
worse than the serial code for the GPU-customized code.
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Figure 8. A comprehensive performance comparison of the OpenCL code versus (a) the serial code (b) the OpenMP code on FT-1500A with the
Parboil benchmark suite. The y-axis represents the performance ratio between the OpenCL code and its serial counter part. OpenCL performs better
when ratio > 1.0. All the available datasets are used in our experiment where ‘L’, ‘M’, ‘S’, and ‘D’ denote Large, Medium, Small, and Default,
respectively. Since there is no OpenMP version for sad, we omit this one when comparing OpenCL against OpenMP.

B. OpenCL Code versus OpenMP Code

Figure 8(b) compares the performance of OpenCL versus
OpenMP on FT-1500A. We see that OpenCL outperforms
OpenMP for the majority of the benchmarks and datasets.
The OpenCL code performs, on average, 6× as fast as
the OpenMP code. For bfs, OpenCL runs significantly
faster than OpenMP. When looking into their code, we
notice that the OpenMP version uses the critical clause
such that all threads execute this code region in a serial
manner. Therefore, the threaded code runs slower than the
one with a single thread. Meanwhile, the OpenCL code
avoids this issue by using atomic operations. It is the
same for tpacf, mri-gridding, and histo, where the
accumulation code is put into the critical region.

For the OpenCL version of mri-q, we also notice
a remarkable performance improvement compared to the
OpenMP version. This application takes a majority of the
execution time to calculate the sin and cos operations. We
argue that the performance boost comes from the customized
mathematical built-ins [17]. To achieve good performance
for the computationally bounded kernels, we have a vec-

torized implementation for these built-in functions. Besides,
the OpenCL version exploits registers where each work-item
works on four data elements. This technique will improve
data locality and task granularity at the register level.

For stencil, the OpenCL version performs much better
than its OpenMP counterpart. The reason is the same as
that of the serial code, where the degraded performance
is due to the noncontinuous memory accesses. Meanwhile,
the OpenCL code can avoid this by transforming the three
dimensional loop into a 3D grid of work-items with the
unit manner of memory accesses. For the OpenMP code,
interchanging the loop index can significantly minimize the
performance gap with the OpenCL code.

To summarize, the applications in OpenCL perform well
on the FT-1500A CPU, and can achieve a competitive per-
formance to the OpenMP version. Our code runs particularly
fast for tpacf, mri-gridding, bfs, stencil, hist,
and mri-q. This is due to the uage of the critical pragma
and the inefficient memory accesses in the OpenMP codes.
To minimize the performance gaps, we have to apply the
optimizations embedded in the OpenCL codes.



Table I
EXISTING OPENCL IMPLEMENTATIONS. (AGPU– AMD GPU, IGPU– INTEL GPU, MGPU– MALI GPU, NGPU– NVIDIA GPU)

PowerPC x86 64 ARMv7 ARMv8 aGPU iGPU mGPU nGPU FPGA DSP Opensource
AMD OpenCL [9] z X z z X z z z z z X
NVIDIA OpenCL [25] z z z z z z z X z z z
Intel OpenCL [15] z X z z z X z z X z z
ARM OpenCL [10] z z X X z z X z z z z
Clover OpenCL [3, 4] z z z z X z z z z z X
TI OpenCL [7, 8] z z X z z z z z z X X
Beignet OpenCL [1] z z z z z X z z z z X
FreeOCL OpenCL [2] X X X z z z z z z z X
Pocl OpenCL [5] X X X z z z z z z z X

VI. RELATED WORK

There exist a variety of OpenCL implementations, which
are shown in Table I. On the one hand, we notice that
most vendor implementations are close-source, except the
one from AMD. This open source Linux Compute project is
Radeon Open Compute ROCm for Radeon Graphics GCN
3 and 4 (Hawaii, Fiji, Polaris) and Intel Xeon E5v3 and
Corev3 CPU (Haswell and newer) or new AMD Ryzen with
PCIe Gen3 atomics capability [6]. Meanwhile, the OpenCL
implementation from TI is customized to TI SoCs (an ARM
CPU + a TI DSP) [8]. On the other hand, the open-source
implementations are typically developed and maintained
by academia. The Gallium Compute Project maintains an
implementation of OpenCL mainly for AMD Radeon GCN
(formerly known as CLOVER [3]), and it builds on the
work of the Mesa project to support multiple platforms [4].
BEIGNET is an implementation released by Intel in 2013
for its GPUs (Ivy Bridge and newer) [1]. POCL is a CPU-
only OpenCL implementation built on Clang and LLVM. In
addition to the traditional CPUs, POCL supports the TTA
and HSA architecture [17, 18]. Similar to POCL, FreeOCL
also supports a large range of multi-core CPUs with the help
of the generic C++ compilers [2]. But this implementation is
indeed CPU-oriented and cannot be extended to accelerators
in a straightforward way. Considering POCL’s portable capa-
bility and its potential of supporting an accelerating device,
we choose to port and extend POCL onto FT-1500A.

To characterize and compare the OpenCL performance
of existing and future devices, Thoman et al. propose a
suite of microbenchmarks [32]. These microbenchmarks are
used to measure quantities such as arithmetic throughput,
the bandwidth and latency of various address spaces, and
the dynamic branching penalties on many-core architectures.
In this context, we choose to use the microbenchmarks on
arithmetic throughput and compiling overheads. To compare
and contrast architectural designs and programming systems
in a fair and open forum, Danalis et al. have designed
the Scalable HeterOgeneous Computing benchmark suite
(SHOC) [11], which is a spectrum of programs that test
the performance and stability of these scalable heteroge-
neous computing systems. At the low level, SHOC uses

microbenchmarks to assess architectural features of the
system: compute units and memory hierarchy. At the high
level, SHOC uses application kernels to determine system-
wide performance including many system features such as
intranode and internode communication among devices. In
this context, we use the microbenchmarks to measuring the
bandwidth when accessing different memory space.

In [28, 29], Shen et al. compare the performance of
OpenCL and OpenMP on three x86_64 multicores. They
identify the factors that significantly impact the overall
performance of the OpenCL code. By taking a reasonable
OpenMP implementation as a performance reference, they
optimize the OpenCL code to reach or exceed this threshold.
The authors find that the performance of OpenCL codes
is affected by hard-coded GPU optimizations which are
unsuitable for multi-core CPUs, the fine-grained parallelism
of the model, and the immature OpenCL compilers. On the
FT-1500A CPU, we have similar observations that the GPU-
customized OpenCL codes perform even worse than the
serial code. This motivates us to generates efficient codes
for FT-1500A from the OpenCL codes with GPU-specific
optimizations in the future.

VII. CONCLUSION

In this paper, we present an implementation for the
OpenCL standard on the FT-1500A CPU. This not only
facilitates the OpenCL codes to run on the ARMv8 CPU,
but provides users with an open programming interface on
this new architecture. Then, we characterize this OpenCL
implementation in terms of overheads, arithmetic through-
put, and memory bandwidth. We also evaluate the OpenCL
implementation over that of the serial code and the OpenMP
codes on the FT-1500A CPU. Our experimental results show
that our OpenCL implementation overtakes the serial codes
for the majority of the benchmarks and performs on average
6× as fast as its OpenMP counterpart. This performance
advantage demonstrates the efficiency of our OpenCL imple-
mentation. In the future, we will investigate how to generate
efficient code from the GPU-specific inputs. Also, we would
like to analyze how to futher optimize the kernel compiler
(e.g., inter-work-item vectorization).
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