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ABSTRACT

This paper presents the design and implementation of an Open
Computing Language (OpenCL) framework for the Matrix-2000
many-core architecture. This architecture is designed to replace
the Intel XeonPhi accelerators of the TianHe-2 supercomputer. We
share our experience and insights on how to design an effective
OpenCL system for this new hardware accelerator. We propose a
set of new analysis and optimizations to unlock the potential of
the hardware. We extensively evaluate our approach using a wide
range of OpenCL benchmarks on a single and multiple computing
nodes. We present our design choices and provide guidance how to
optimize code on the new Matrix-2000 architecture.
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1 INTRODUCTION

TianHe-2A (TH-2A) is an upgrade of the leading TOP500 high-
performance-computing (HPC) system TianHe-2 (TH-2) [10]. The
most significant enhancement of TH-2A over its predecessor is
replacing the Intel Xeon Phi (Knights Corner) accelerators with
a proprietary accelerator called Matrix-2000 [10, 15]. The fully
upgraded system has a total of 4,981,760 cores (with 92% of the
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cores are provided by Matrix-2000) and 3.4 PB primary memory,
and reaches a theoretical peak performance of 94.97 Pflops, doubling
the theoretical peak performance of the former TianHe-2 system !.

While the Matrix-2000 accelerator provides the potential for
higher performance, its potential can only be realized if the software
can make effective use of it. To unlock the hardware potential, we
need to provide an efficient programming model. We believe that
OpenCL is a good fit for this purpose. This is because it is emerging
as a standard for heterogeneous computing, and allows the same
code to be executed across a variety of processors [12].

Since existing OpenCL frameworks mainly target CPUs and
GPUs [1, 2, 6, 20, 23, 25], they are not directly applicable to Matrix-
2000. Providing an efficient OpenCL implementation for Matrix-
2000 is unique in that the hardware architecture differs from a many-
core GPU with a smaller number of cores and runs a lightweight
operating system. To exploit the hardware, we need a compiler to
translate kernels into target-specific binaries and provide a runtime
to manage task dispatching and data communication between the
host and the accelerator.

This paper presents the design and implementation of MOCL, an
OpenCL programming interface for Matrix-2000. MOCL consists
of two main components: a kernel compiler and a runtime. The
kernel compiler is built upon the LLVM compiler infrastructure [24].
It translates each OpenCL kernel of a program to an executable
binary to run on Matrix-2000. At the core of the compiler is a
set of compiling passes to translate an OpenCL work-group? into
a work-item loop. We map distinct work-item loops to different
hardware threads, so that the work-items within the same group
are executed by a single thread to run in a sequential manner. We
present a push-based task dispatching strategy to distribute work-
item loops to hardware threads. Our mapping strategy is different
from many OpenCL implementations which execute work-items
within a group in parallel. The idea is to partition the work to be run
by 32 parallel threads, so that each parallel thread executes on one
of the 32 cores of a Matrix-2000 super-node. As we will show later
in the paper, this strategy leads to better performance compared to

! As of January 2018, TianHe-2 is ranked as the second fastest HPC system with a peak
performance of 54.9 petaflops in the fiftieth TOP500 list: https://www.top500.org/

2 An OpenCL work-group is a collection of work-items that can execute on a single
compute unit. Here, a work-item is an invocation of the kernel on a given input.
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the conventional OpenCL mapping strategies. On top of this, we
propose a set of optimization techniques including lock-free atomics
to exploit the hardware design.

We evaluate our approach by applying it to 70 OpenCL bench-
marks from five well-established benchmark suits. We test the
performance of our OpenCL implementation on both a single and
multiple Xeon-Matrix2000 nodes of the upgraded TH-2A system.
We compare various design choices and show that the chosen ones
lead to good performance. We show that our approach, in com-
bination with MPI for cross-node communication, provides good
scalability across multiple computing nodes. We provide extensive
discussions on how to optimize OpenCL programs on the Matrix-
2000 architecture, offering useful insights on how to write efficient
code for this accelerator.

The main contribution of this paper is on sharing the experience
and insights of designing an effective OpenCL framework for the
Matrix-2000 architecture. Our OpenCL implementation has now
been deployed to the upgraded TH-2A supercomputer and is ready
to be made available to the public.

2 BACKGROUND

In this section, we provide an overview of the OpenCL program-
ming interface and the Matrix-2000 architecture.

2.1 Open Computing Language

Open Computing Language (OpenCL) is a standardized program-
ming model for heterogeneous computing [22]. OpenCL defines
a generic platform model comprising a host and one or several
devices known as computation engines. The computation engines
can be central processing units (CPUs), or “accelerators” like GPUs
and Matrix-2000 processors. A device can have multiple processing
elements (PEs). The PEs can be grouped into several compute units
(CUs) which have global and local memory.

An OpenCL program consists of two parts: kernels to run on
one or more devices, and a host program that executes on the host
(which is typically a CPU). The host program defines and manages
the kernel execution contexts. The computational task is typically
coded into kernel functions. When a kernel is submitted to a device
for execution, an index space of work-items (instances of the kernel)
is defined. Work-items, grouped in work-groups, are executed on
the processing elements of the device in a lock-step fashion. Each
work-item has its own private memory space, and can share data
via the local memory with other work-items in the same work-
group [13, 14, 16]. All work-items can access the global memory.

2.2 The Matrix-2000 Architecture

Figure 1(a) provides a high-level overview of Matrix-2000. A Matrix-
2000 processor has 128 computing cores running at 1.2 GHz, offering
a peak performance of 2.46 Tflops. Computing cores are grouped
into four super-nodes (SNs), 32 cores per SN. A SN is further broken
down into clusters with four cores per cluster, and cores within a
cluster share a coherent data cache. The SNs are connected through
a scalable on-chip communication network. Each computing core
is an in-order RISC core with a 12-stage pipeline. Each core is a
256-bit vector instruction set architecture with two 256-bit vector
functional units.
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(a) The conceptual structure of Matrix-2000.

===

(b) The SuperNode (SN) topology.

Figure 1: An overview of the Matrix-2000 accelerator.

Figure 1(b) shows the topology of the network on chip (NoC)
within a SN in Matrix-2000. The NoC is a 4X2 mesh, with a total of
eight routers. A cluster and a directory control unit (DCU) are pinned
to a router. Furthermore, two DDR4-2400 memory control units
(MCUs) are integrated into each SN and SNs communicate through a
Fast Interconnect Transport (FIT) port.

At the system level, each computing node of TH-2A has two
Intel Ivy Bridge CPUs with 64GB of DDR3 RAM, and two Matrix-
2000 accelerators with 128GB of DDR4 RAM. The CPU uses a 16X
PCI Express 3.0 connection to communicate with the accelerator.
Furthermore, a host operating system runs on the CPUs and a light-
weight Linux runs on each of the Matrix-2000 processors. The host
and the accelerator can communicate through the Unix socket via
the PCle.

3 DESIGN AND IMPLEMENTATION OF MOCL

In this section, we describe the overall design and implementation
of MOCL. Here we focus on the OpenCL kernel compiler and the
runtime system.

3.1 Overall Design

Figure 2 provides an overview of the software stack and the com-
ponents of MOCL. At the hardware level, the host CPU and the
Matrix-2000 accelerators are connected via PCIe; at the software
level, both sides run an operating system. The driver works as the
communication backbone between host and accelerators. In the
user space, a user communication library is developed to enable
the host-device communication.

MOCL is developed on top of the user communication library
and the LLVM compiling infrastructure. It consists of the kernel
compiler and the runtime system (Section 3.2 and 3.3). The kernel
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Figure 2: An overview of the software stack and MOCL. The
left part shows the host CPU and its software stack and
the right part shows the Matrix-2000 and its software stack.
The host CPU and the Matrix-2000 are physically connected
through PCIe. The host and the device run an individual op-

erating system.

compiler translates the OpenCL kernels into device-specific binaries
(mtx) to run on the Matrix-2000, whereas the runtime implements
the OpenCL host APIs and manages the runtime context [19]. Fur-
thermore, we use a resident process as daemon on Matrix-2000 to
detect requests (e.g., process creation/destroy) from the host CPU.
As we note in Section 2.1, an OpenCL program has two parts:
kernels and a host program. Kernel compilation is triggered when
the host program invokes the OpenCL c1BuildProgram APL The
host program is first compiled by a host compiler (e.g. gcc), which
is then linked with the runtime library (i.e., 1ibOpenCL. so0). Dur-
ing runtime, the compiled kernels and the required data are first
offloaded onto a Matrix-2000 accelerator. Then, the offloaded tasks
are scheduled to run on the idle hardware threads. At the end of
kernel execution, the results will be transferred back to the host.

3.2 The MOCL Kernel Compiler

3.2.1 Compiler Description. The compiler of MOCL translates
OpenCL C kernel codes into the Matrix-2000 instructions, mtx and
stored as binaries. This is a cross-compilation process taken place
on the host CPU . The kernel compiler implements the OpenCL
v1.2 specification.

Unlike GPUs, Matrix-2000 runs a lightweight operating system
and supports POSIX Threads. Thus, the design of the kernel com-
piler resembles the traditional multi-core compilers. Optimizing
OpenCL on multi-core CPUs is a heavily studied area and there is
much research to draw upon. Our implementation follows the gen-
eral strategies used in prior work [11, 19-21, 23, 28, 29]. We found
that these strategies give good results on Matrix-2000. Specifically,
we schedule OpenCL work-groups to run on distinct hardware
threads. There are two ways for scheduling work-items within
a work-group to execute on a hardware thread: (1) wrapping a
code region to a work-item loop [20, 21, 23, 29], or using user-level

threads [19]. MOCL employs the first strategy by statically parti-
tioning the work-items into a number of work-item loops (WIL) to
reduce dynamic thread scheduling overhead. Forming work-item
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(a) Overview (b) The internal structure of the MOCL compiler

Figure 3: The compilation work flow on Matrix-2000: (a)
shows the overall framework, and (b) shows the data anal-
ysis flow and compilation passes based on LLVM.

loops is achieved by using nested loops around the kernel(work-
item function, WIF), where each loop performs a certain number
of work-items of a work group.

When looking into the internal structure of the kernel compiler
(Figure 3(b)), we see that it relies heavily on the LLVM compiling
framework. At the front end, clang is used to translate OpenCL C
kernel codes into the LLVM intermediate format. Then we need to
link the built-in library into the kernel. At the core of our compiler,
a set of compiling passes is used to transform WIF into WIL. Once
it is done, we assemble the intermediate code into mtx binaries,
which is submitted to the target device for execution.

After generating work-item loops, we package them into a dy-
namic library (i.e., kernel. so in Figure 3(b)), which is then trans-
ferred to the device. Thereafter, the device runtime system loads the

library to obtain the handle of each work-group function. During
runtime, the work-group functions serve as the entry function of
worker threads that run on the device.

3.2.2  Support Synchronization Barriers. OpenCL C uses barriers
to synchronize work-items within a work-group. When producing
work-item loops, we need to respect the synchronization semantics
of the work-group barriers inside the kernel source code [20]. In
this work, we partition the code with barriers into separate code
regions, each of which is transformed into a work-item loop. We
support three types of barriers, described as follows.

Category 1: An unconditional barrier occurs on all code exe-
cution paths and separates the whole function body into two or
more code regions. Thus, we create a work-item loop for each code

region, and the content of each loop body is the code located in
the corresponding code region. Figure 4 shows that the kernel has
an unconditional barrier, which partitions the DCT kernel into two
parts, each enclosed by a work-item loop.

Category 2: A conditional barrier diverges the execution path
of the kernel, so that work-items from some work-groups follow
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__kernel void DCT(__global float % output,
_-global float * input, __global float * dct8x8,
_-local float * inter, const uint width,
const uint blockWidth, const uint inverse){

Y
for(uint k=0; k < blockWidth; k++){
uint index1 = (inverse)? ixblockWidth + k : k * blockWidth + i;
uint index2 = getIdx(groupldx, groupIdy, j, k, blockWidth, width);
acc += dct8x8[index1] * input[index2];

b
inter[j*blockWidth + il = acc;

barrier (CLK_LOCAL_MEM_FENCE);

acc = 0.0f;
for (uint k=0; k < blockWidth; k++){
uint index1 = i* blockWidth + k;

uint index2 = (inverse)? j*xblockWidth + k :
acc += inter[index1] = dct8x8[index2];

k* blockWidth + j;

output[idx] = acc;

__kernel void DCT(__global float * output,
_-global float * input, __global float * dct8x8,
_-local float * inter, const uint width,
const uint blockWidth, const uint inverse){
/% WI_loop_1 { */
/o K]
for(uint k=0; k < blockWidth; k++){
uint index1 = (inverse)? ixblockWidth + k : k * blockWidth + i;
uint index2 = getIdx(groupIdx, groupIdy, j, k, blockWidth, width);
acc += dct8x8[index1] % input[index2];

)
inter[j*blockWidth + il = acc;
/%y %/
/% WI_loop_2 { */
acc = 0.0f;
for(uint k=0; k < blockWidth; k++){
uint index1 = i* blockWidth + k;
uint index2 = (inverse)? jxblockWidth + k :
acc += inter[index1] * dct8x8[index21;

k* blockWidth + j;

output[idx] = acc;
/%y %/
¥

(a) Unconditional barriers

(b) Resulting code after work-item loop generation

Figure 4: Work-item loop code generation for the DCT OpenCL kernel which has an unconditional barrier.

__kernel void reduce6(__global T *g_idata,
__global T #g_odata, unsigned int n,
__local volatile T# sdata){
/% pre-process #/
// do reduction in shared mem
if (blockSize >= 512) {
if (tid < 256) { sdata[tid] += sdataltid + 2561; }
barrier (CLK_LOCAL_MEM_FENCE);
}

/% post-precess */

__kernel void reduce6(__global T *g_idata,
__global T #g_odata, unsigned int n,
__local volatile T* sdata){

/% WI_loop_1 { */

/% pre-process */
/% } */
// do reduction in shared mem
if (blockSize >= 512) {
/% WI_loop_2 { */
if (tid < 256) { sdata[tid] += sdataltid + 2561; }
/%y %/

/% WI_loop_3 { */
/% post-process x/

/%Y %/

b

(a) Barriers in if-statement

(b) Resulting code after work-item loop generation

Figure 5: Work-item loop code generation for the reduction OpenCL kernel which has a conditional barrier.

one branch, while work-items from other work-groups follow an-
other branch. According to the OpenCL specification, the work-
items from the same work-group must reach the same barriers [22].
That is, if one branch of an if-statement has a barrier, then all the
work-items from the same work-group will execute that branch.
Therefore, evaluating the conditional variables must yield the same
results among the work-items of a work-group. To handle such con-
ditional barriers, we create a work-item loop for the code regions
before and after the barrier within a branch, and place the branch
statement outside of the work-item loop. We also generate work-
item loops for the code regions before and after the if-statement.
As an example, Figure 5 shows a kernel with a conditional barrier,
and the transformed code that has three work-item loops.
Category 3: A loop barrier locates inside a loop-statement. A
loop barrier is a special case of the conditional barrier because
each work-item must iterate the same number of times, and, in
each iteration, the loop index must be the same among all the
work-items of a work-group. To handle such barriers, we create
work-item loops for the code regions before and after the barrier
within the loop body, and place the loop statement outside them.

3.2.3 Lock-free Atomic Functions. The OpenCL C programming
language provides a rich set of built-in functions for scalar and
vector operations [22]. Among them, atomic functions can provide
atomic operations on 32-bit signed, unsigned integers and single pre-
cision floating-point data types. The atomic functions are typically
implemented using a set of atomic library calls that are generated

Table 1: The mapping between OpenCL built-in atomics and
the LLVM library calls.

OpenCL built-in atomics LLVM library calls

atomic_add __sync_fetch_and_add
atomic_sub __sync_fetch_and_sub
atomic_xchg __atomic_exchange_n
atomic_inc __sync_fetch_and_add
atomic_dec __sync_fetch_and_sub
atomic_cmpxchg __atomic_compare_exchange_n
atomic_min __sync_fetch_and_min
atomic_max __sync_fetch_and_max
atomic_and __sync_fetch_and_and
atomic_or __sync_fetch_and_or
atomic_xor __sync_fetch_and_xor

by LLVM. For example, the atomic_add function can be imple-
mented based on the external library call __sync_fetch_and_add.
The specific mappings between the OpenCL atomic functions and
the LLVM library calls are shown in Table 1. The list of functions
support atomic variables stored in the global memory.

When atomic variables are stored in local memory, the afore-
mentioned mapping approach are still applicable. But we note that
the synchronization overhead from concurrent work-items can be
avoided in this case. In MOCL, a work-group is transformed into a
work-item loop by our kernel compiler, which is scheduled to a hard-
ware thread. The loop iterations will then be serially enumerated
by following the SEO (sequential execution order) constraint. That
is, the work-items within a work-group are executed one by one
and in a sequential fashion. In terms of memory access, the work-
items of this work-group will access local variables sequentially,
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// read, add, store
__attribute__((overloadable))
T atomic_add(volatile Q T #xp, T val)
{

T retval = =*p;

*p = retval + val;

return retval;

3

Figure 6: The implementation of atomic_add when atomic
variables are located in __local memory. Q denotes the ad-
dress space, T denotes the type of atomic variables, and the
atomic function returns the old value in the end.

command queue

el LINNICE TR

AN
o cICreafBuffer g N e malloc
host __ inzte_/dﬁtzyimis E daemonﬂei“i’e_snﬂ’ thunk
process 3 process process

Figure 7: The interaction between host and device.

and there is no chance of running these operations concurrently
within a work-group. Therefore, the atomic operations on local
memory can be replaced by equivalent functional operations with-
out synchronization. Figure 6 shows the implementation of the
atomic_add function with a regular addition statement. We see
that the statements run sequentially to update the atomic variable
p. This lock-free atomics can significantly improve kernel perfor-
mance (see Section 5.4) by avoiding the synchronization overheads.

3.3 The MOCL Runtime

The MOCL runtime implements the OpenCL APIs and generates the
OpenCL library (1ibOpenCL . so). As shown in Figure 2, the runtime
system has two components: a host-side runtime and a device-side
runtime. To facilitate a first-time communication and manage the
runtime context, we create a daemon process on the device side.

3.3.1 Host Runtime. The host runtime system needs to imple-
ment the OpenCL host APIs. The host-device interaction is per-
formed using OpenCL commands, which are broadly categorized
into buffer allocation and deallocation, kernel compilation and exe-
cution commands, data movement commands, and synchronization
commands. Figure 7 shows the workflow of issuing a command
from the host to execute on the device. Here, the host commands
are put into the command queues from which the devices fetch com-
mands to execute. The host-device interaction is realized through
the user communication library.

As an example shown in Figure 7, the buffer allocation command
(i.e., cICreateBuffer) is pushed into the command queue (@) and
executed on the device using the malloc() function to allocate
a buffer space (®). When executing kernel commands, the host
launches the kernel function and dispatches the predefined work-
groups onto the hardware threads. The runtime system calls the
kernel compiler when building kernel code, and the daemon process
monitors requests from the host. To manage the device-side runtime
and run the offloading tasks, we use a thunk process, which is
created during the OpenCL initialization stage and released when
finalizing the program.
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created signaled

Figure 8: Thread states and their transitions.

3.3.2  Device Runtime. Figure 7 shows that the thunk process
manages the device-side runtime and runs the offloading tasks. This
process is created and started to run at the beginning of an OpenCL
program, and is destroyed before the program exits.

We create a thread pool with a total of 32 threads on a SN of
Matrix-2000 when initializing the thunk process. Figure 8 shows
that each thread has four states: idle, ready, done, and exit. The
initial state of threads is idle. A condition variable is used to signal
the idle threads to be ready. By doing so, we aim to avoid continually
polling and save cycles. Note that, when the number of tasks (i.e.,
#work-groups) is less than the number of idle threads, we will use
only a portion of them. Once the threads done with tasks, they will
be switched back to be idle and put back into the thread pool again.
MOCL will clean up the thread context and the associated data when
the thunk process exits.

Distributing pending tasks to idle threads is at the core of the
device runtime. In this context, a work-group is regarded as the
basic unit of task distribution. When starting an OpenCL kernel, our
runtime queries the number of idle threads and evenly dispatches
all of the tasks to idle threads at the same time. If the number of idle
threads is greater than that of tasks, only a portion of the threads
are signaled. Different from the task dispatching strategy used in
POCL [20], we call our approach a push-based strategy. Our runtime
pushes tasks to available threads while in POCL, all the available
threads are pulling tasks once they have completed the assigned
tasks. Our task dispatching strategy has the benefit of mitigating
the overhead of thread polling and synchronization.

3.4 Implementation Details

3.4.1 Handling Kernel Variables. For __global, __constant
and __local variables, they are not private to a single work-item.
When generating work-item loops, we leave such variables intact.
For __private variables, things become complicated. When a pri-
vate variable is used in only one work-item loop, we make no
change of it. When the private variable is used in more than one
work-item loops, but its value is the same for different work-items,
we also make no change. At the same time, we need move the
statements which update the content of the variables outside of the
work-item loop. For the other types of private variables, we have
to allocate an array for them, which is located by the local index of
work-items.

3.4.2  Runtime Profiling. To facilitate the performance analysis
of the runtime system, we provide a profiling module for the device
runtime. When we submit a kernel function, the device runtime
will assemble kernel arguments, fetch idle threads from the thread
pool, dispatch tasks to the fetched threads, execute tasks on each
thread, and return threads back. We record the time consumed
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by each stage during runtime. With this module, we can analyze
and measure the performance metrics such as load balancing and
scheduling cost, so as to help improve MOCL’s efficiency.

3.4.3  Supporting Multiple Devices. MOCL can be used with MPI to
support multiple computing devices. Recall that MOCL caches kernel
binaries on the local file system. This means that each concurrent
compilation process would generate a single binary. To avoid write
conflicts, we provide an environment variable MOCL_ENV_CACHE
to indicate where to save mtx binaries, so that each compilation
process can store the binaries into a dedicate directory. Furthermore,
MOCL only creates the thunk process on the device that is being
used.

4 EXPERIMENTAL SETUP

Hardware Platform. We evaluate our approach on both a single
and multiple compute nodes of the TH-2A supercomputer. Each
compute node of TH-2A is equipped with two Intel Ivy Bridge CPUs
and two proprietary Matrix-2000 accelerators. Each node has 192
GB memory. The host CPUs and the Matrix-2000 are connected
through the PCIe. More details of the Matrix-2000 architecture can
be found in Section 2.2.

Systems Software. Both the CPU and the accelerator runs an op-
erating system (OS). The host CPU runs Redhat Linux v7.0 (with
kernel v.3.10). The Matrix-2000 runs a lightweight OS with Linux
kernel 3.14. We use an in-house driver to enable data communica-
tions between the host and Matrix-2000.

Benchmarks. To validate and evaluate our OpenCL implementa-
tion, we use 70 benchmarks from the NVIDIA SDK, AMD SDK, SNU
NPB, Shoc and Parboil suites. To evaluate our approach across com-
puting nodes, we use Clover, a mini-app that solves the compress-
ible Euler equations on a Cartesian grid, using an explicit, second-
order accurate method 3. It uses OpenCL for kernel execution and
MPI for cross-node execution. We analyze these benchmarks and
collect information from them to guide the implementation of MOCL.

Performance Report. For each test case, we report the geomet-
ric mean performance across all benchmarks. We run each test
case multiple times, until the difference between the upper and
lower confidence bounds under a 95% confidence interval setting is
smaller than 5%. We compare our approach to POCL [3], an open-
source OpenCL implementation based on LLVM, in terms of kernel
compilation policies and scheduling cost.

5 EXPERIMENTAL RESULTS

In this section, we first present the overall performance MOCL, and
evaluate its efficiency. Then we share our experiences on how
to write efficient OpenCL programs on Matrix-2000. Finally, we
evaluate the scalability of MOCL on the TH-2A system.

5.1 Overall Performance

We present the performance of OpenCL programs on Matrix-2000,
by comparing the parallel versions with the serial versions. For this,
we build two versions of MOCL: one uses 32 threads per device, and
the other one uses a single thread. Figure 9 presents the overall

3CloverLeaf: http://uk-mac.github.io/CloverLeaf/.
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performance of the 70 programs. Compared to the serial programs,
we can obtain an average speedup of 7.1x with MOCL.

For the programs such as btncs, fwtf, the speedup is smaller
than 1. This is because their kernels are invoked for over 1400
times, but the kernel execution takes only 100us per iteration. The
overhead of thread management is larger than the kernel execution
span, which leads to a slow parallel version on Matrix-2000. And for
other programs such as binsch, dwh, and LU, the parallel versions
only run slightly faster than their serial counterparts. This is due
to the fact that these programs have only 1 or 2 work-groups, and
there are insufficient work-groups to fully utilize the resources.

On the other hand, we can achieve a significant speedup when
(1) the program has enough work-groups, (2) the kernel execution
time is much larger than the overhead of thread management, and
(3) the workloads across threads are balanced. For example, EP has
4096 work-groups and its kernel executes 11s at a time. Moreover,
the hardware threads on Matrix-2000 can achieve a balanced load,
shown in Figure 12(a). As a result, EP obtains a speedup of 31.7x.

5.2 Kernel Compilation Policies

In MOCL, an OpenCL kernel is compiled when the OpenCL host API
clEnqueueNDRange is invoked. At this point, the work-group size
is known to the compiler. Thus, we can pass this work-group size as
either a constant parameter or a variable parameter to the compiler.
We refer the first strategy as constant parameter compilation (CPC)
and the latter as variable parameter compilation (VPC). These two
policies differ in that CPC has to recompile the kernel when using
a different work-group size. This occurs when an OpenCL kernel
is called in an iterative manner and the work-group size changes
between iterations. In contrast, using a variable parameter (VPC)
can avoid the overhead of recompilation.

Figure 10 shows speedup of kernel compilation and execution
time for CPC over VPC. A speedup of over 1 means that CPC yields
better performance. Overall, we see that using a constant work-
group can often achieve a better performance than using a variable
work-group. This is because the work-group size is fixed in such a
case and we only have to compile kernels once. In addition, using a
constant upper bound for a work-item loop brings more optimiza-
tion opportunities such as vectorization. This is why using the CPC
policy performs better even though the kernel compilation takes
more time. Nonetheless, we note a different performance behavior
for BT, LU, NvBlsh, ScReduc, ScScan, and PbBFS. A common ob-
servation of these benchmarks can be noted that the kernels are
invoked iteratively and the work-group size changes between iter-
ations. As a result, the overhead of recompiling kernels becomes
nonneglectable, and using VPC runs faster. In MOCL, we provide
programmers with both CPC and VPC. In default, the CPC policy is
enabled. But programmers can switch to the VPC policy by setting
the environment variable MOCL_ENV_KCP=2.

5.3 Device Runtime Scheduling

Figure 11 shows the scheduling cost between MOCL and POCL. For
this, we synthesize a microbenchmark with an aim to measuring the
overhead of the scheduling strategies used in MOCL and POCL. This
microbenchmark is an OpenCL program that has a host part for
managing contexts and a kernel part with an empty body. Therefore,
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Figure 9: Speedup of OpenCL programs over the serial versions on Matrix-2000. The value of the reference line is equal to 1.0.
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Figure 10: Speedup of kernel compilation strategy CPC over VPC.
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Figure 11: Comparing the scheduling overhead between POCL
and MOCL. The x-axis represents #work-groups, each having
only one work-item and the y-axis denotes the scheduling
time from dispatching tasks to their completion.

the scheduling overhead can be roughly estimated by measuring
the running time from the start of task dispatching to the moment
when all the work-groups have been done.

In POCL, each worker thread pulls a fixed amount of work-groups
from the task pool in each round. Every time a thread is pulling,
it will have to synchronize with the other threads. This synchro-
nization overhead becomes nonnegligible in particular when we
have a large number of work-groups. This is due to the fact that the
worker threads need to make pulling again and again. In MOCL, how-
ever, we use a master thread to push tasks (i.e., the work-groups) to
worker theads in one time. This often holds because the number
of work-groups is determined at the time of starting an NDRange.
Therefore, the worker threads do not have to synchronize with
each other thereafter. This explains the observation in Figure 11
that, when the number of work-groups grows, the scheduling cost
of MOCL becomes significantly smaller than that of POCL.

When we only have a very few work-groups, the scheduling
overhead of MOCL is also much smaller than that of POCL. This is
because that MOCL only activates a necessary number of worker
threads which are no more than the number of tasks and leaves
others idle. By contrast, POCL will activate all the idle threads and
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(a) Load distribution of EP (b) Load distribution of PETPACF

Figure 12: The workload per thread of EP and PbTPACF

dispatch tasks to each of them. Therefore, our scheduling strategy
can avoid the unnecessary scheduling cost. This is particularly true
when an OpenCL program starts its kernel(s) iteratively.

A natural extension to our scheduling approach is to leverage the
work-stealing technique. That is, we first push tasks to the worker
threads at one time and then apply the work-stealing technique
among threads during runtime. By systematically analyzing the
70 benchmarks, however, we observe that most OpenCL programs
have a rather even workload distribution among work-groups. As
shown in Figure 12(a), the one-time workload distribution can guar-
antee a good load balancing. Thus, applying work-stealing on these
programs is not a must. Meanwhile, programs such as PbTPACF have
branches and thus distinct work-items may run different amounts
of workloads (Figure 12(b)). For such programs, it is still necessary
to implement the work-stealing technique. Provided that there are
very few such programs among the 70 benchmarks, we will leave
this extension for the future work. To summarize, we calculate
that the average ratio (between the fastest worker thread and the
slowest one) of load balancing is around 90.5%, which is considered
to be well load balanced.

5.4 Evaluating Atomic Operations

We evaluate the performance of our atomic functions over several
programs, which are from the Parboil and AMD benchmark suites.
We implement two versions of the atomic functions: one is built on
the LLVM sync library calls, and the other uses our lock-free im-
plementation. We measure their kernel execution time to compare
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Table 2: The performance evaluation of the optimized
atomic functions when atomic variables are located in
__local memory. The speedup is the performance of our im-
plementation versus the one based on external library calls.

Programs Atomics Locations Speed up
StrS atomic_{inc, dec} __local 1.11
rads atomic_inc __local 1.08
histoA atomic_inc __local 4.32
PbBFS atomic_{add, min, xchg} __{local, global} 1.00
PbHisto atomic_{add, min, max} __{local, global} 1.00
PbTPACF  atomic_inc __local 1.28

the performance of our optimized atomic functions. From Table 2,
we see that our optimized atomic functions can achieve a speedup
of up to 4.32x, when compared to the baseline implementation.
Most atomic functions in PbBFS and PbHisto work on updating
variables in __global memory. As we perform no optimizations on
such atomic functions, these benchmarks can gain a slight perfor-
mance improvement. Other programs such as histoA and PbTPACF,
work on updating atomic variables in __local memory. We note
that such benchmarks can yield significant speedups, which comes
from the usage of our lock-free atomics.

5.5 Programming and Code Optimization on
Matrix-2000: A Programmer’s Perspective

With the help of our OpenCL framework, programmers can take
Xeon-Matrix2000 as a conventional heterogeneous platform. But
we argue that the following optimization guidelines are required to
achieve high performance on this platform.

5.5.1 On Reduction Operations. In MOCL, the work-items in a
work-group are executed in a sequential way, i.e., the sequential
execution order (SE0). By leveraging this implicit constraint, we
can remove the usage of local memory and barrier. We analyze the
benchmarks and find that the reduction operation can be reimple-
mented with SEO in a straightforward manner. In Figure 13, we
show how we use SEO to implement reduction operations for Reduc
in the AMD-SDK benchmark suite. In the original kernel, it uses
a loop and barrier to implement reduction. When taking the SEO
constraint into account, we can simply implement the reduction
operation in an equivalent way that we sum the private result from
the first work-item to the last one.

We rewrite the benchmarks with reductions and implement the
reduction operation without local memory or barrier. The speedup
can be up to 1.5x, when compared to the original kernel. Specifi-
cally, Reduc, IS, PbTPACF, PbBFS can achieve a speedup of 1.42x,
1.03x, 1,51%, and 1.07x, respectively. Therefore, we recommend that
programmers remove the usage of local memory and load data
elements directly from the global space for reductions.

5.5.2  On Local Memory Usage. The local memory in OpenCL
can be used to stage the data from global memory, or used to cache
the result produced by other work-items. Using local memory can
enable faster memory accesses, because local memory is located on-
chip and has a much smaller access latency on GPUs. But it is not the
same for Matrix-2000, where the architecture has no such physical
on-chip buffers. In such a case, local memory is implemented as
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__kernel void reduce(__global uint4* input,

__global uint4* output, __local uint4x sdata)

unsigned int tid = get_local_id(Q);

unsigned int bid = get_group_id(Q);

unsigned int gid = get_global_id(@);

unsigned int localSize = get_local_size(9Q);

unsigned int stride = gid * 2;

sdataltid] = input[stride] + input[stride + 1];

barrier (CLK_LOCAL_MEM_FENCE);

for (unsigned int s = localSize >> 1; s > 0; s >>= 1)

if(tid < s)
{

sdatal[tid] += sdataltid + s];

¥
barrier (CLK_LOCAL_MEM_FENCE);
}
if(tid == @) output[bid] = sdatale];
}

(a) Reduction with explicit synchronization

__kernel void reduce(__global uint4* input,

__global uint4* output, __local uint4x* sdata)
{

unsigned int tid get_local_id(0);

unsigned int bid get_group_id(0);

unsigned int gid = get_global_id(Q);

unsigned int localSize = get_local_size(Q);

unsigned int stride = gid » 2;

if (tid == o)

output[bid] = @;
output[bid] += input[stride] + input[stride + 1];

(b) Reduction with implicit synchronization

Figure 13: Reduction operation optimization for Reduction.
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Figure 14: The performance without local memory com-
pared to with local memory. The kernels without using local
memory run up to 2.4x faster.

a buffer in the global memory space. Therefore, accessing local
memory is same as accessing global memory on Matrix-2000.
Among all the benchmarks, we note several of them are using
local memory to stage data: LUcom, MT, NvMM, and QRS. We rewrite
these programs by removing the usage of local memory. Figure 14
shows that we obtain an up to 2.4x speedup, compared to the origi-
nal kernel. We demonstrate the speedup of the optimized version
compared to the version with local memory. Overall, the kernels
without local memory achieve an average speedup of 1.3x over the
original kernels. To summarize, it is not recommended that local
memory be used in OpenCL kernels on Matrix-2000. As doing so,
we will introduce extra memory accesses and synchronizations.

5.5.3  On Memory Access Patterns. There are two typical mem-
ory access patterns: (1) a work-item accesses memory contiguously
(Figure 15(a)), and (2) the access distance between two neighbouring
work-items is 1, but the data elements accessed by one work-item
may be far from each other (Figure 15(b)). In MOCL, the work-items
in one work-group are scheduled for execution in a sequential
fashion. As a result, pattern 1 can bring a much larger memory
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Figure 15: Memory access patterns. This is the memory foot-
print of one work group. WI0 means the memory that work
item 0 will access.

[ 11 device ZZ] 4 devices RXY 8 devices

%ﬁmﬁﬁﬁﬁﬁﬁ

&34-* /\ob /\«\b «*‘
&

Speed up

& &

Figure 16: Evaluate the performance of multiple devices

bandwidth than pattern 2, and thus is preferred by programmers
to implement OpenCL kernels. We compare the performance of
these patterns with PbSgemm, and see that using pattern 1 can yield
a speedup of 17.74x.

5.6 Evaluating the Scalability of MOCL

We evaluate the scalability of MOCL on either multiple Matrix-2000s
or multiple compute nodes, each with multiple devices.

On Multiple Matrix-2000s. In order to evaluate MOCL’s perfor-
mance on multiple devices, we select the benchmarks which use
multiple devices from Nvidia and AMD benchmark suites. We run
these programs in three cases: using 1 device, 4 devices and 8 de-
vices. From Figure 16, we see how the performance increases when
using increasingly more devices.

On Multiple Nodes with Multiple Matrix-2000s. We run the mini-
app Clover on 256 nodes of TH-2A to evaluate the scalability of
MOCL. Clover is implemented with MPI and OpenCL, where each
MPI process is used to control a device. To fully utilize the TH-2A
system, we run 8 processes per compute node, which corresponds
to 8 devices. We first run Clover with a fixed input size, and change
the number of nodes and devices. The execution time of Clover is
shown in Figure 17(a). We see that the execution time decrease when
increasing the number of MPI processes. But when the number of
MPI processes is large than 8, the change of execution time is very
slight. Then we keep the task size of each MPI process constant,
and vary the number of nodes and input size. The execution time
is shown in Figure 17(b). When the input dataset increases, we see
that the execution time increase slowly. It means that MOCL achieves
a good strong and weak scalability on the TH-2A system.

6 RELATED WORK

There exist various OpenCL implementations. On the one hand, we
notice that most vendor implementations are closed-source, except
the one from AMD. This open source Linux Compute project is
Radeon Open Compute ROCm for Radeon Graphics GCN 3 and 4
(Hawaii, Fiji, Polaris) and Intel Xeon E5v3 and Corev3 CPU (Haswell
and newer) or new AMD Ryzen with PCle Gen3 atomics capabil-
ity [4]. Meanwhile, the OpenCL implementation from TI is cus-
tomized to TI SoCs (an ARM CPU + a TI DSP) [5]. On the other
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Figure 17: Evaluate the scalability of Clover across comput-
ing nodes.

hand, the open-source implementations are typically developed and
maintained by academia. The Gallium Compute Project maintains
an implementation of OpenCL mainly for AMD Radeon GCN (for-
merly known as CLOVER), and it builds on the work of the Mesa
project to support multiple platforms [2]. BEIGNET is an implemen-
tation released by Intel in 2013 for its integrated GPUs (Ivy Bridge
and newer) [1]. POCL is a CPU-oriented OpenCL implementation
built on Clang and LLVM. In addition, POCL supports the TTA and
HSA architecture [20]. As of April 2017, POCL has an experimental
support for NVIDIA GPU devices via a new backend which makes
use of the LLVM NVPTX backend and the CUDA driver API. Similar
to POCL, FreeOCL also supports a large range of multi-core CPUs
with the help of the generic C++ compilers [6]. But this framework
is purely CPU-oriented and cannot be extended to accelerators in a
straightforward way. Although these frameworks provide us with
valuable building blocks, none of them can be directly applicable
to the Xeon-Matrix2000 platform.

In [19], Gummaraju et al. present Twin Peaks, a software plat-
form for heterogeneous computing. This allows codes originally
targeted for GPUs execute efficiently on CPUs as well. In particular,
they propose several techniques in the runtime system to efficiently
utilize the caches and functional units present in CPUs. The ex-
perimental results show that the techniques enable GPGPU-style
code to run efficiently on multicore CPUs with minimal runtime
overheads. In [25], Lee et al. present the design and implementa-
tion of an OpenCL framework for architectures which consist of
a general-purpose processor core and multiple accelerator cores
without caches but a small internal local memory. Their OpenCL C
kernel translator contains three source-code transformation tech-
niques to boost performance. In [29], Stratton et al. describe a
framework (MCUDA), which allows CUDA programs to be executed
efficiently on shared memory, multi-core CPUs. The framework
consists of a set of source-level compiler transformations and a
runtime system for parallel execution. This approach can achieve a
better performance than the OpenMP version on multicore CPUs.
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These OpenCL implementations are targeted for multicore CPUs.
Our kernel compiler resembles theirs by using the work-item loop
strategy. Different from these work, our kernel compiler further op-
timizes kernel performance by fully leveraging the SEO constraint.

To compare and contrast architectural designs and programming
systems, Danalis et al. have designed the Scalable HeterOgeneous
Computing benchmark suite (SHOC) [9], which is a spectrum of
programs that test the performance and stability of these scalable
heterogeneous computing systems. In this context, we use these
benchmarks to evaluate the performance of our design. In [26, 27],
Shen et al. compare the performance of OpenCL and OpenMP on
three x86_64 multicores. They identify the factors that significantly
impact the overall performance of the OpenCL code. By taking a
reasonable OpenMP implementation as a performance reference,
they optimize the OpenCL code to reach or exceed this thresh-
old. The authors find that the performance of OpenCL codes is
affected by hard-coded GPU optimizations which are unsuitable
for multi-core CPUs, the fine-grained parallelism of the model, and
the immature OpenCL compilers. On the Matrix-2000 architecture,
we have similar observations that the GPU-customized OpenCL
codes perform even worse than the serial code. This motivates us
to generate efficient codes for Matrix-2000 from the OpenCL codes
with GPU-specific optimizations in the future.

There is also work on OpenCL code generation [8, 18, 31, 32]
and mapping [7, 17, 30, 33]. These approaches are complementary
to our code generation framework.

7 CONCLUSION

This paper has presented the design and implementation of an
OpenCL kernel compiler and runtime for the Matrix-2000 accelera-
tor. The core of our compiler are a set of compiling passes built on
the LLVM infrastructure. We provide extensive discussions on our
design choices, and optimization strategies for implementing the
OpenCL compiler and runtime. We evaluate our approach by apply-
ing to 70 OpenCL benchmarks on a single accelerator, and across
accelerators and computing nodes. Experimental results show that
our optimization strategies give better performance when com-
pared with a state-of-the-art open-source OpenCL implementation.
We share our experience on code optimization on Matrix-2000, pro-
viding useful insights on how to effectively program this unique
architecture.
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